

GE 159 Plastics Avenue Pittsfield, MA 01201 USA

Transmitted Via Overnight Courier

June 15, 2007

Mr. Richard Hull U.S. Environmental Protection Agency EPA New England One Congress Street, Suite 1100 Boston, Massachusetts 02114-2023

Re: GE-Pittsfield/Housatonic River Site

Groundwater Management Area 2 (GECD320)
Baseline Assessment Final Report and Long-Term Monitoring Program Proposal

Dear Mr. Hull:

Enclosed is the Baseline Assessment Final Report and Long-Term Monitoring Proposal for Groundwater Management Area 2 (GMA 2 Long-Term Monitoring Proposal). This report and proposal was prepared in accordance with Section 2.7 of the Statement of Work for Removal Actions Outside the River (SOW) (Appendix E to the CD), with further details presented in Section 6.3.2 of Attachment H to the SOW (Groundwater/NAPL Monitoring, Assessment, and Response Programs).

The GMA 2 Long-Term Monitoring Proposal provides an overall assessment of the hydrogeologic setting and groundwater quality at GMA 2 since initiation of baseline monitoring activities in spring 2002, including a preliminary statistical evaluation of the baseline monitoring data and a comparison of results relative to the applicable Performance Standards. Based on that information, GE proposes the implementation of a long-term groundwater quality monitoring program for GMA 2 and describes the wells selected for inclusion, proposed sampling frequency and analyses, and reporting requirements.

This report also summarizes the supplemental groundwater monitoring program activities conducted at GMA 2 in spring 2007 and presents the results of the groundwater sampling and analysis performed in accordance with EPA's letter to GE dated November 16, 2006.

Please call Andrew Silfer or me if you have any questions regarding this report and proposal.

Sincerely,

Richard W. Gates

Remediation Project Manager

Richard W. Cales/Net for

Enclosure

cc: Dean Tagliaferro, EPA

Rose Howell, EPA (CD-ROM)

Tim Conway, EPA (cover letter only)

Holly Inglis, EPA (CD-ROM)

K.C. Mitkevicius, USACE (CD-ROM)

Linda Palmieri, Weston (2 hard copies and CD-ROM)

Anna Symington, MDEP (cover letter only)

Jane Rothchild, MDEP (cover letter only)

Susan Steenstrup, MDEP (2 copies)

Thomas Angus, MDEP (cover letter only)

Mayor James Ruberto, City of Pittsfield

Pittsfield Commissioner of Public Health

Thomas Hickey, Director, PEDA

Jeffery Bernstein, Bernstein, Cushner & Kimmel

Property Owner - Parcel K10-10-3

Property Owner - Parcel K10-10-4

Property Owner - Parcel K10-10-5/-6

Property Owner - Parcel K10-10-33

Property Owner - Parcel K10-11-1

Property Owner - Parcel K10-11-2

Property Owner - Parcel K10-11-3

Property Owner - Parcel K10-11-5

Property Owner - Parcel K10-12-1

Property Owner - Parcel K10-13-1

Theresa Bowers, Gradient Nancy E. Harper, MA AG Dale Young, MA EOEA

Michael Carroll, GE (cover letter only)

Andrew Silfer, GE (CD-ROM)

Rod McLaren, GE (cover letter only)

James Nuss, ARCADIS BBL

James Bieke, Goodwin Procter

John Ciampa, SPECTRA

Affected Property Owners

Public Information Repositories

GE Internal Repositories

General Electric Company Pittsfield, Massachusetts

Baseline Assessment Final Report and Long-Term Monitoring Program Proposal for Groundwater Management Area 2

June 2007

ARCADIS BBL

Baseline Assessment Final Report and Long-Term Monitoring Program Proposal for Groundwater Management Area 2

(GMA 2 Long-Term Monitoring Proposal)

Prepared for:

General Electric Company

Prepared by: ARCADIS of New York, Inc. 6723 Towpath Road Syracuse New York 13214-0066 Tel 315.446.9120 Fax 315.449.0017

Our Ref.: B0030154

Date:

June 15, 2007

ARCADIS BBL Table of Contents

1.	Introdu	ıction		1
	1.1	Genera	al	1
	1.2	Overvi	ew of Groundwater Investigation Activities at GMA 2	2
	1.3	Backgı	round Information on the GMA	4
	1.4	Forma	t of Document	5
2.	Spring	2007 F	ield and Analytical Procedures	6
	2.1	Genera	al	6
	2.2	Ground	dwater Elevation Monitoring	6
	2.3	Ground	dwater Sampling and Analysis	6
3.	Spring	2007 G	Froundwater Analytical Results	9
	3.1	Genera	al	9
	3.2	Ground	dwater Quality Performance Standards	9
	3.3	Spring	2007 Groundwater Quality Results	11
4.	Overal	l Asses	sment of Groundwater Quality	13
	4.1	Genera	al	13
	4.2	Overvi	ew of Hydrogeologic Conditions at the Site	13
	4.3	Overvi Site	ew of the Nature and Extent of Substances in Groundwater at the	15
		4.3.1	Actual or Potential Sources of Constituents within the GMA	15
		4.3.2	Spatial Distribution of Groundwater Constituents within the GMA	15
		4.3.3	Actual Migration or Potential for Migration of Constituents Outside the GMA	16
		4.3.4	Assessment of the Adequacy of the Monitoring Locations Used During the Baseline Program	17
		4.3.5	Evaluation of Variations in Groundwater Quality	18
	4.4	Identifi Standa	cation of Wells Used to Measure Compliance with Performance ards	19
	4.5	Identifi	cation of Areas Where GW-2 Performance Standards Apply	20

ARCADIS BBL Table of Contents

	4.6	Statistical Assessment of Baseline and Other Historical Data		
	4.7	4.7 Groundwater Results Relative to GW-2 Performance Standards		22
	4.8	4.9 Overall Assessment of Groundwater Quality Data		24
	4.9			26
		4.9.1	VOCs	27
		4.9.2	SVOCs	27
		4.9.3	PCBs	27
		4.9.4	PCDDs/PCDFs	28
		4.9.5	Inorganics	28
		4.9.6	Concentration Trends	28
	4.10		tion of the Need for Follow-Up Investigations, Assessments, or Response Actions	29
5.	Basis of Proposed Long-Term Monitoring Program			30
6.	Propos	ed Lon	ng-Term Monitoring Program	32
	6.1	Genera	al	32
	6.2	Long T	erm Groundwater Monitoring Locations	32
		6.2.1	Groundwater Quality Monitoring	32
		6.2.2	Groundwater Elevation and NAPL Monitoring	33
	6.3	Propos	sed Field Activities Schedule	33
	6.4	Monthl	y CD Reporting	34
	6.5	Notifica	ation and Interim Response Actions	35
		6.5.1	Groundwater Quality-Related Notifications	35
		6.5.2	NAPL-Related Notifications	36
	6.6	Report	ing Requirements	37
		6.6.1	Monitoring Event Evaluation Reports	37
		6.6.2	Long-Term Trend Evaluation Reports	39
	6.7	Applica	ation of Performance Standards to Long-Term Monitoring Data	40

ARCADIS BBL Table of Contents

	6.8	Descri	ption of Statistical Techniques to be Employed	4
		6.8.1	Mann-Kendall Test	42
		6.8.2	Sen's Slope Estimator	42
		6.8.3	Seasonal Kendall Test	43
		6.8.4	References	44
7.	Schedi	ule of F	uture Activities	46
	7.1	Field A	activities Schedule	46
	7.2	Report	ing Schedule	46
Tal	oles			
	1	Ва	seline Monitoring Program Summary	
	2	Mo	onitoring Well Construction	
	3	Gr	oundwater Elevation Data – Spring 2007	
	4	Sp	ring 2007 Groundwater Analytical Results	
	5	Pro	oposed Long-Term Groundwater Quality Monitoring Program	
Fig	ures			
	1	Gr	oundwater Management Areas	
	2	Мс	onitoring Well Locations	
	3	Wa	ater Table Contour Map – Spring 2007	
	4	Pro	oposed Long-Term Groundwater Monitoring Program	
Αp	pendices	3		
	Α	Fie	eld Sampling Data	
	В	His	storical Groundwater Data	
	С	Da	ata Validation Report – Spring 2007	
	D	Ou	utline of Monitoring Event Evaluation Report	

General Electric Company Pittsfield, Massachusetts

1. Introduction

1.1 General

On October 27, 2000, a Consent Decree (CD) executed in 1999 by the General Electric Company (GE), the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP), and several other governmental entities was entered by the United States District Court for the District of Massachusetts. The CD governs (among other things) the performance of response actions to address polychlorinated biphenyls (PCBs) and other hazardous constituents in soil, sediment, and groundwater in several Removal Action Areas (RAAs) located in or near Pittsfield, Massachusetts that collectively comprise the GE-Pittsfield/Housatonic River Site (the Site). For groundwater and non-aqueous-phase liquid (NAPL), the RAAs at and near the GE Pittsfield facility have been divided into five separate Groundwater Management Areas (GMAs), which are illustrated on Figure 1. These GMAs are described, together with the Performance Standards established for the response actions at and related to them, in Section 2.7 of the Statement of Work for Removal Actions Outside the River (SOW) (Appendix E to the CD), with further details presented in Attachment H to the SOW (Groundwater/NAPL Monitoring, Assessment, and Response Programs). This report relates to the Former Oxbows J and K Groundwater Management Area, also known as and referred to herein as GMA 2.

The CD and Attachment H to the SOW specify a series of steps to be taken at each of the GMAs to investigate and, as appropriate, respond to groundwater conditions. The CD and Attachment H to the SOW provide initially for the design and implementation of a baseline monitoring program at each of the GMAs. Pursuant to Section 1.1.1 of Attachment H, the objective of the baseline monitoring program was to establish existing conditions in order to assess whether the existing response actions are protecting surface water, groundwater and sediment quality, and human health in occupied buildings. Additionally, the baseline monitoring program provided the basis for evaluating the effectiveness of future response actions, including the identification of any additional response actions that may be necessary to attain the Performance Standards. The baseline data will be used for comparison of future data collected under the long-term monitoring program.

The baseline monitoring program consisted of semi-annual groundwater quality sampling and quarterly elevation monitoring and generally lasts for a two year period. As described further below, however, the baseline monitoring program was extended as allowed by the CD in certain circumstances.

General Electric Company Pittsfield, Massachusetts

Following the completion of the baseline monitoring program at each GMA, GE is to prepare a Baseline Assessment Final Report. The requirements for the Baseline Assessment Final Report are specified in Section 6.3.2 of Attachment H to the SOW. As part of that Final Report, GE is to propose a long-term monitoring program for the GMA. This report constitutes the Baseline Assessment Final Report and Long-Term Monitoring Program Proposal for GMA 2.

1.2 Overview of Groundwater Investigation Activities at GMA 2

In February 2001, GE submitted a *Baseline Monitoring Program Proposal for Former Oxbows J and K Groundwater Management Area* (GMA 2 Baseline Monitoring Proposal). The GMA 2 Baseline Monitoring Proposal summarized the hydrogeologic information available at that time for GMA 2 and proposed groundwater monitoring activities for the baseline monitoring period at this GMA. EPA provided conditional approval of the GMA 2 Baseline Monitoring Proposal by letter of September 6, 2001. Thereafter, certain modifications were made to the GMA 2 baseline monitoring program as a result of EPA approval conditions and/or findings during field reconnaissance of the selected monitoring locations and, subsequently, during implementation of the baseline monitoring program.

The baseline monitoring program, which was initiated in spring 2002, consisted of four semi-annual groundwater quality sampling events (with intervening quarterly groundwater elevation monitoring) followed by preparation and submittal of semi-annual reports summarizing the groundwater monitoring results, comparing the groundwater results with applicable Performance Standards, and, as appropriate, proposing modifications to the monitoring program. The fourth baseline monitoring report for GMA 2 entitled *Groundwater Management Area 2 Baseline Groundwater Quality Interim Report for Fall 2003* (Fall 2003 GMA 2 Groundwater Quality Report), was submitted to EPA on January 30, 2004.

Section 6.1.3 of Attachment H to the SOW provides that if the two-year baseline monitoring period ends prior to the completion of soil-related response actions at all the RAAs in a GMA, GE may make a proposal to EPA to modify and/or extend the Baseline Monitoring Program based on the results of the initial assessment and the estimated timing of future response actions at the RAAs in the GMA. The approved GMA 2 Baseline Monitoring Proposal also allows GE to propose a modification and/or extension of the baseline monitoring program based on the results of the initial assessment and the estimated timing of future response actions.

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

Therefore, as the soil-related Removal Actions at the RAA within GMA 2 were not yet complete, the Fall 2003 GMA 2 Groundwater Quality Report included a proposal to modify and extend baseline groundwater quality monitoring activities at GMA 2 (under a program referred to as the interim monitoring program) until such time as the soil-related Removal Actions at the GMA 2 RAA were completed and the needs for a long-term groundwater quality monitoring program were fully delineated.

EPA conditionally approved the Fall 2003 GMA 2 Groundwater Quality Report in a letter dated May 13, 2004. Under the approved interim monitoring program, annual water quality sampling (alternating between the spring and fall seasons) and semi-annual water level monitoring at selected GMA 2 wells was initiated in spring 2004. Subsequent interim sampling events were conducted in fall 2005 and spring 2006.

The results of the round of interim groundwater sampling activities performed at this GMA in spring 2006 were provided in GE's July 2006 Groundwater Management Area 2 Groundwater Quality Interim Report for Spring 2006 (Spring 2006 GMA 2 Groundwater Quality Report), which proposed to perform supplemental sampling activities in fall 2006 at one monitoring well (GMA2-1) where anomalous concentrations of PCBs were detected in spring 2006. That report was conditionally approved by EPA in a letter dated November 16, 2006. In that letter, EPA required GE to collect an additional sample from well GMA2-1 in spring 2007 and, since soil-related Removal Actions at Former Oxbow Areas J and K were completed in November 2006, to submit a final baseline assessment report and proposal for long-term groundwater quality monitoring at GMA 2.

The results of the fall 2006 supplemental sampling event were provided in GE's January 2007 *Groundwater Management Area 2 Supplemental Groundwater Quality Monitoring Report for Fall 2006* (Fall 2006 GMA 2 Groundwater Quality Report), which was conditionally approved by EPA in a letter dated March 15, 2007. GE subsequently conducted the spring 2007 groundwater elevation monitoring event and supplemental sampling activities at GMA 2. This Baseline Assessment Final Report and Long-Term Monitoring Program Proposal for GMA 2 (GMA 2 Long-Term Monitoring Proposal) provides a summary of the spring 2007 sampling activities conducted at GMA 2, evaluates the overall groundwater quality at the GMA pursuant to the requirements of Attachment H of the SOW, and contains a proposal for long-term groundwater quality monitoring activities.

General Electric Company Pittsfield, Massachusetts

1.3 Background Information on the GMA

GMA 2 encompasses the Former Oxbow Areas J and K RAA, comprised of approximately 8.5 acres adjacent to the Housatonic River, located approximately 2,500 feet upstream of the Newell Street Bridge (Figures 1 and 2). This GMA contains a combination of non-GE-owned commercial areas, residential properties, and recreational areas. Certain portions of this GMA originally consisted of land associated with oxbows or low-lying areas of the Housatonic River. As shown on Figure 1 and 2, the Housatonic River flows through the central portion of this GMA, separating Former Oxbow Areas J and K. Re-channelization and straightening of the Housatonic River in the early 1940s by the City of Pittsfield and the United States Army Corps of Engineers (USACE) separated several such oxbows and low-lying areas from the active course of the river. These oxbows and low-lying areas were subsequently filled with various materials from a variety of sources, resulting in the current surface elevations and topography.

Former Oxbow Area J encompasses an area of approximately 6 acres located north of the Housatonic River, south of East Street, and between Fasce Street and Commercial Street. Commercial businesses occupy a portion of this area along East Street. The west side of this portion of GMA 2 consists of a wooded recreational area and footpath, and the rights-of-way for undeveloped Longview Terrace and Zeno Street. The remainder of Former Oxbow Area J contains commercial properties and small, wooded recreational areas.

Former Oxbow Area K encompasses an area of approximately 2.5 acres south of the Housatonic River, across from the eastern portion of Former Oxbow Area J and generally to the northeast of Ventura Avenue. This area consists of a large open field on the south side of the river, and the right-of-way for Longview Terrace. The majority of this generally flat area is undeveloped and covered with grass and low brush. However, residential properties occupy a portion of this area along Ventura Avenue.

Removal Actions performed by GE at the Former Oxbow Areas J and K RAA were implemented between July and November 2006, and generally included site preparation, soil removal/replacement, and property restoration. The excavations were generally completed to depths of one to three feet, with the exceptions that one six-foot removal for PAHs was performed at Parcel K10-11-3 and one seven-foot removal for PCBs was performed at Parcel K10-10-6. The final limits of soil removal were completed to the limits shown on the EPA-approved technical drawings included in the *Final Removal Design/Removal Action Work Plan for Former Oxbow Areas J and K* (September 2005), as modified in the *Addendum to Final Removal Design/Removal Action Work Plan for Former Oxbow Areas J and K* (April 2006). Overall, approximately 1,955 cubic yards of soil were

General Electric Company Pittsfield, Massachusetts

removed from Former Oxbow Areas J and K and placed within the appropriate On-Plant Consolidation Area.

The baseline monitoring program at GMA 2 initially involved a total of 12 monitoring wells (Figure 2). Under the baseline program, all of these wells and a river staff gauge were monitored for groundwater/surface water elevations on a quarterly basis, while 11 of the wells were sampled on a semi-annual basis for analysis of PCBs and/or certain non-PCB constituents listed in Appendix IX of 40 CFR Part 264, plus three additional constituents -- benzidine, 2-chloroethylvinyl ether, and 1,2-diphenyhydrazine (Appendix IX+3). The specific groundwater quality parameters for each individual well were selected based on the monitoring objectives of the well.

Monitoring for the presence of NAPL is performed as part of the routine groundwater elevation monitoring activities at this GMA. NAPL has not been observed within any of the GE monitoring wells monitored to date at GMA 2 as part of the baseline program.

Groundwater elevation contours that have been developed for GMA 2 generally reflect the topography of the site with flow towards the Housatonic River. Figure 3 illustrates groundwater elevations and flow direction using data collected during the April 2006 monitoring round. The groundwater elevation data utilized to prepare Figure 3 is provided in Table 3.

1.4 Format of Document

The remainder of this report is presented in six sections. Section 2 describes the groundwater-related activities performed at GMA 2 in spring 2007. Section 3 presents the analytical results obtained during the spring 2007 sampling event, including a summary of the applicable groundwater quality Performance Standards identified in the CD and SOW, and a comparison of the spring 2007 results to those Performance Standards. Section 4 provides an overall assessment of the hydrogeologic setting and groundwater quality at GMA 2 since initiation of baseline monitoring activities in spring 2002, including a preliminary statistical evaluation of the baseline monitoring data and a comparison of results relative to the applicable Performance Standards. Section 5 describes the basis upon which GE has identified monitoring points and constituents to be analyzed in a long-term monitoring program. Section 6 proposes the implementation of a long-term groundwater quality monitoring program for GMA 2 and describes the wells selected for inclusion, proposed sampling frequency and analyses, and reporting requirements. Finally, Section 7 presents the schedule for future field and reporting activities related to groundwater quality at GMA 2.

General Electric Company Pittsfield, Massachusetts

2. Spring 2007 Field and Analytical Procedures

2.1 General

The activities conducted as part of the baseline/interim groundwater monitoring program in spring 2007, and summarized herein, involved the measurement of groundwater and surface water levels at all of the monitoring locations within GMA 2 and the collection and analysis for PCBs of filtered groundwater samples from well GMA2-1, as shown in Table 1. A summary of construction details for the GMA 2 wells is provided in Table 2. The field sampling data for the spring 2007 sampling event are presented in Appendix A. This section discusses the field procedures used to measure site groundwater levels and collect groundwater samples, as well as the methods used to analyze the groundwater samples. All activities were performed in accordance with GE's approved Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP).

2.2 Groundwater Elevation Monitoring

Groundwater elevation monitoring for fall 2006 was performed on April 23, 2007 at each of the 12 wells listed in Table 3 and at the Housatonic River staff gauge. In addition, the groundwater elevation in well GMA2-1 was also monitored on March 8, 2007, prior to sample collection. River elevations were monitored on a monthly basis. Monitoring for the potential presence of NAPL was performed at each well where groundwater elevations were measured. No NAPL was observed during these monitoring events or any of the previous monitoring events at GMA 2.

The groundwater elevation data were used to prepare a groundwater elevation contour map for spring 2007 (Figure 3). As shown on this figure and described in Section 1.2 above, the spring 2007 groundwater elevations and flow direction are consistent with previous seasons. Specifically, the groundwater flow direction along the areas north and south of the river banks is generally toward the Housatonic River, with slight variations corresponding to surface topography.

2.3 Groundwater Sampling and Analysis

The spring 2007 supplemental sampling event was performed on March 8, 2007. As shown in Table 1, groundwater samples were collected from one groundwater monitoring well (well GMA2-1). Well construction information for all of the monitoring wells at GMA 2 is included in Table 2.

General Electric Company Pittsfield, Massachusetts

Low-flow sampling techniques, using a bladder pump, were utilized for purging well GMA2-1 and collection of groundwater samples during this sampling event. The monitoring well was purged utilizing low-flow sampling techniques until field parameters (including temperature, pH, specific conductivity, oxidation-reduction potential, dissolved oxygen, and turbidity) stabilized. Field parameters were measured in combination with the sampling activities at the monitoring wells. The field parameter measurements and other field sampling data are provided in Appendix A. A summary of the stabilized field measurement results from well GMA2-1 during the spring 2007 monitoring event is provided below:

Parameter	Units	Stabilized Reading
Turbidity	Nephelometric turbidity units (NTU)	2
рН	pH units	6.56
Specific Conductivity	Millisiemens per centimeter	11.85
Oxidation-Reduction Potential	Millivolts	96.0
Dissolved Oxygen	Milligrams per liter	3.10
Temperature	Degrees Celsius	0.12

As shown above, for this sampling event, the final groundwater turbidity level was well below the target turbidity level of 50 NTU. These results indicate that the sampling and measurement procedures utilized during this sampling event were effective in obtaining groundwater samples with low turbidity. Some of the values listed above (e.g., groundwater temperature) were impacted during low flow pumping between the well head and the field-parameter meter by extreme cold air temperatures on the sampling date (wind chill of approximately -15 to -20 degrees Fahrenheit). The recorded groundwater temperature readings are near-freezing and are not likely indicative of actual conditions in the subsurface. However, it is unlikely that the cold air temperatures affected water quality and representative samples are believed to have been collected since all readings properly stabilized prior to sample collection.

The collected groundwater samples were submitted to SGS Environmental Services, Inc. of Wilmington, North Carolina (SGS) for laboratory analysis. The groundwater samples were filtered and analyzed for PCBs using EPA Method 8082.

Following receipt of the analytical data from the laboratory, the preliminary results were reviewed for completeness and compared to the Massachusetts Contingency Plan (MCP) Method 1 GW-3 standards, and to the MCP Upper Concentration Limits (UCLs) for groundwater. As well GMA2-1 is not a GW-2 well, no comparison to GW-2 standards was

General Electric Company Pittsfield, Massachusetts

performed. The preliminary analytical results were presented in the next monthly report on overall activities at the GE-Pittsfield/Housatonic River Site.

Finally, the data were validated in accordance with the FSP/QAPP and the validated results were utilized in the preparation of this report. The data validation report is provided in Appendix C. As discussed in the validation report, 100% of the spring 2007 groundwater quality data are considered to be useable. The validated analytical results are summarized and discussed in Section 3 below.

General Electric Company Pittsfield, Massachusetts

3. Spring 2007 Groundwater Analytical Results

3.1 General

A description of the spring 2007 groundwater analytical results is presented in this section. Table 4 provides a comparison of the analytical results with the currently applicable groundwater quality Performance Standard for PCBs established in the CD and SOW and with the MCP UCL for groundwater. The Performance Standards generally are described in Section 3.2 (below) and an assessment of the spring 2007 results relative to the groundwater quality Performance Standard for PCBs and the PCB UCL is provided in Section 3.4.

3.2 Groundwater Quality Performance Standards

The Performance Standards applicable to response actions for groundwater at GMA 2 are set forth in Section 2.7 and Attachment H (Section 4.1) of the SOW. In general, the Performance Standards for groundwater quality are based on the groundwater classification categories designated in the MCP. The MCP identifies three potential groundwater categories that may be applicable to a given site. One of these, GW-1 groundwater, applies to groundwater that is a current or potential source of potable drinking water. None of the groundwater at any of the GMAs at the Site is classified as GW-1; however, the remaining MCP groundwater categories are applicable to GMA 2 and are described below:

- GW-2 groundwater is defined as groundwater that is a potential source of vapors to the
 indoor air of buildings. Groundwater is classified as GW-2 if it is located within 30 feet
 of an existing occupied building and has an average annual depth below ground
 surface (bgs) of 15 feet or less. Under the MCP, volatile constituents present within
 GW-2 groundwater represent a potential source of organic vapors to the indoor air of
 the overlying and nearby occupied structures.
- GW-3 groundwater is defined as groundwater that discharges to surface water. By MCP definition, all groundwater at a site is classified as GW-3 since it is considered to ultimately discharge to surface water. In accordance with the CD and SOW, all groundwater at GMA 2 is considered as GW-3.

The CD and the SOW allow for the establishment of standards for GW-2 and GW-3 groundwater at the GMAs through use of one of three methods, as generally described in the MCP. The first, known as Method 1, consists of the application of pre-established numerical "Method 1" standards set forth in the MCP for both GW-2 and GW-3 groundwater (310 CMR 40.0974). These "default" standards have been developed to be conservative

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

and will serve as the initial basis for evaluating groundwater at GMA 2. The current MCP Method 1 GW-3 standards for the constituents analyzed in the spring 2007 sampling event are listed in Table 4. For constituents for which Method 1 standards do not exist, the MCP provides procedures, known as Method 2, for developing such standards (Method 2) standards) for both GW-2 (310 CMR 40.0983(2)) and GW-3 (310 CMR 40.0983(4)) groundwater. For such constituents that are detected in groundwater during the baseline monitoring program, Attachment H to the SOW states that in the Baseline Monitoring Program Final Report, GE must propose to develop Method 2 standards using the MCP procedures or alternate procedures approved by EPA, or provide a rationale for why such standards need not be developed. For constituents whose concentrations exceed the applicable Method 1 (or Method 2) standards, GE may develop and propose to EPA alternative GW-2 and/or GW-3 standards based on a site-specific risk assessment. This procedure is known as Method 3 in the MCP. Upon EPA approval, these alternative riskbased GW-2 and/or GW-3 standards may be used in lieu of the Method 1 (or Method 2) standards. Of course, whichever method is used to establish such groundwater standards, GW-2 standards will be applied to GW-2 groundwater and GW-3 standards will be applied to GW-3 groundwater.

On January 9, 2006, MDEP approved revised Method 1 numerical standards for a number of constituents in groundwater. The revised standards became effective on April 3, 2006. This report uses the revised numerical standards for those substances for which revised numerical standards exist.

Based on consideration of the above points, the specific groundwater quality Performance Standards for GMA 2 consist of the following:

- At monitoring wells designated as compliance points to assess GW-2 groundwater (i.e., groundwater located at an average depth of 15 feet or less from the ground surface and within 30 feet of an existing occupied building), groundwater quality shall achieve any of the following:
 - a) the Method 1 GW-2 groundwater standards set forth in the MCP (or, for constituents for which no such standards exist, Method 2 GW-2 standards once developed, unless GE provides and EPA approves a rationale for not developing such Method 2 standards);
 - alternative risk-based GW-2 standards developed by GE and approved by EPA as
 protective against unacceptable risks due to volatilization and transport of volatile
 chemicals from groundwater to the indoor air of nearby occupied buildings; or

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

- a condition, based on a demonstration approved by EPA, in which constituents in the groundwater do not pose an unacceptable risk to occupants of nearby occupied buildings via volatilization and transport to the indoor air of such buildings.
- 2. Groundwater quality shall ultimately achieve the following standards at the perimeter monitoring wells designated as compliance points for GW-3 standards:
 - a) the Method 1 GW-3 groundwater standards set forth in the MCP (or, for constituents for which no such standards exist, Method 2 GW-3 standards once developed, unless GE provides and EPA approves a rationale for not developing such Method 2 standards); or
 - alternative risk-based GW-3 standards proposed by GE and approved by EPA as protective against unacceptable risks in surface water due to potential migration of constituents in groundwater.

These Performance Standards are to be applied to the results of the individual monitoring wells included in the monitoring program. Several monitoring wells have been designated as the compliance points for attainment of the Performance Standards identified above. These wells were identified in the GMA 2 Baseline Monitoring Proposal (although certain modifications were made subsequent to submittal of that proposal as a result of EPA approval conditions, findings during field reconnaissance or during the course of the baseline monitoring program).

As noted above, the groundwater samples from the spring 2007 groundwater quality sampling event were analyzed only for filtered PCBs. Therefore, the results are compared to the PCB Performance Standard. In addition, the analytical results from the spring 2007 sampling event were compared to the MCP PCB UCL for groundwater.

3.3 Spring 2007 Groundwater Quality Results

During spring 2007, filtered groundwater samples were collected from one monitoring well (GMA2-1) and analyzed for PCBs as part of the spring 2007 supplemental sampling event. The PCB analytical results are provided in Table 4. That table also provides comparisons to the MCP Method 1 GW-3 standard for PCBs and with the PCB UCL for groundwater specified in the MCP (310 CMR 40.0996(7)), as discussed below. No PCBs were detected in either the filtered sample or a duplicate sample collected from well GMA2-1. The analytical detection limit was below both the Performance Standard for this well (the MCP Method 1 GW-3 standard of 0.0003 ppm for PCBs) and the UCL for PCBs in groundwater of 0.005 ppm. As shown graphically in Appendix B, the fact that filtered PCBs were not

General Electric Company Pittsfield, Massachusetts

detected in well GMA2-1 in either spring 2007 or fall 2007 suggests that the elevated spring 2006 filtered PCB results (the results that prompted the extended sampling during the last two rounds) were anomalous.

General Electric Company Pittsfield, Massachusetts

4. Overall Assessment of Groundwater Quality

4.1 General

This report constitutes the seventh groundwater quality monitoring report submitted since commencement of the GMA 2 baseline groundwater monitoring program and the final report on the baseline groundwater assessment. The information presented herein is based on the laboratory results obtained during the course of the GMA 2 baseline and interim groundwater monitoring programs.

For the purpose of assessing overall groundwater conditions and identifying locations and constituents for inclusion in a long-term groundwater quality monitoring program, the analytical results from the baseline and interim groundwater sampling events were compared to the applicable groundwater Performance Standards for GMA 2, which are described in Section 3.2 above.

The following subsections present an overview of hydrogeologic conditions at the Site, an overview of the nature and extent of constituents in groundwater at the Site, the identification of the wells used to measure compliance with Performance Standards, an identification of the areas where GW-2 standards apply, a statistical assessment of the data, a comparison of the baseline groundwater analytical results to the Performance Standards, an overall assessment of groundwater quality data, an evaluation of the need for follow-up investigations, assessments, or interim response actions, and the basis for the proposed long-term monitoring program. In support of those discussions, Table B-1 in Appendix B contains a summary of all analytical data collected at GMA 2 since commencement of the baseline monitoring program in spring 2002.

4.2 Overview of Hydrogeologic Conditions at the Site

In general, two unconsolidated hydrogeologic units are present within GMA 2. These units are briefly described below:

Surficial Deposits - This unit generally consists of heterogeneous fill materials and alluvial sands and gravels. These sands and sandy gravels are well-sorted and were deposited as glacial outwash and/or in association with recent depositional processes within the Housatonic River. Isolated peat deposits are also present, typically at depths corresponding to the bottom elevations of the river and the former oxbows. At certain locations within GMA 2, non-native fill materials are present above the alluvial deposits. These fill materials typically consist of sand, gravel, metallic debris, and wood.

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

The alluvial unit extends from ground surface to depths of at least 25 feet. Fill materials, where present, have been observed to depths down to 7 feet. From a hydrogeologic perspective, the fill and the sand/gravel deposits act as a single unit. The existing monitoring wells within GMA 2 are screened within this unit, as it is the upper and primary water-bearing unit within the GMA. Groundwater is encountered under unconfined conditions within this unit at depths between approximately 4 and 15 feet below ground surface.

Glacial Till - Based on boring results at nearby locations within East Street Area 1-South (within GMA 1), glacial till underlies the alluvial deposits and typically consists of dense silt containing varying amounts of clay, sand, and gravel. Till is generally encountered at depths ranging from approximately 10 to over 40 feet beneath East Street Area 1-South and East Street Area 2-South, further to the west.

The unconsolidated units at GMA 2 overlie bedrock. Based on information obtained from nearby areas, bedrock occurs at depths up to approximately 50 to 60 feet near the Housatonic River. The bedrock consists of white coarse-grained marble associated with the Stockbridge Formation.

Groundwater at GMA 2 generally flows toward the Housatonic River and is primarily influenced by the existing topography and the area's location (adjacent to the river). Figure 3 illustrates typical water table conditions, using groundwater data obtained during the spring 2007 groundwater monitoring event. In general, the depth to groundwater is greater on the northern side of the Housatonic River due to the presence of a steeper riverbank than on the south of the river. The average depth to groundwater at Former Oxbow Area J ranges from approximately 11.4 feet (in the center portion) to just greater than 14 feet (to the east and west of the former oxbow). The average depth to groundwater at Former Oxbow Area K ranges from approximately 4 feet (in the northern portion, adjacent to the Housatonic River) to approximately 10 feet (at the southernmost monitoring point).

Two surface features may also affect groundwater flow within Former Oxbow Areas J and K. A drainage ditch is present along the western limb of Former Oxbow Area J that extends to the Housatonic River, while a small intermittent creek which extends between the Housatonic River and Goodrich Pond crosses the eastern portion of Former Oxbow Area K. The presence of these surface drainage features may locally influence groundwater flow in their immediate vicinity, but the overall groundwater flow direction is directed toward the Housatonic River.

General Electric Company Pittsfield, Massachusetts

4.3 Overview of the Nature and Extent of Substances in Groundwater at the Site

4.3.1 Actual or Potential Sources of Constituents within the GMA

Based on current information, the principal potential constituent sources that could affect groundwater quality within GMA 2 appear to include the former oxbows and existing or historical commercial businesses located within or upgradient of this GMA. These potential sources are described below.

Former Oxbows - As a result of the straightening of the Housatonic River channel in the late 1930s and early 1940s, Former Oxbows J and K were isolated from the newly formed channel of the river. These oxbows were subsequently filled with materials originating from the GE facility as well as other sources. There are no available records that provide information regarding the specific type or origin of the fill materials, or parties involved in the filling activities. The former oxbow areas are labeled as "disposal areas" on rechannelization drawings developed by the City of Pittsfield in 1940. These areas were publicly accessible and it is likely that a variety of industries and/or individuals contributed fill material. Based on a review of available aerial photographs, it is unclear when these former oxbows were filled.

Other Sources - In addition to fill materials that have been placed within the former oxbows, it is possible that there are other potential contributing sources of groundwater constituents to GMA 2. Commercial businesses present within or upgradient of GMA 2 include a gas station, restaurant, and an automotive electrical repair shop located within Former Oxbow Area J.

4.3.2 Spatial Distribution of Groundwater Constituents within the GMA

Appendix B contains a summary of all groundwater analytical data collected at GMA 2 since commencement of the baseline monitoring program in spring 2002. Table B-1 presents the baseline data from all monitoring wells and Tables B-2 through B-12 contain a summary of the detected results for each monitoring well that was sampled during the baseline monitoring program. As seen on those tables, very few constituents were consistently detected during the baseline period. The observed detections were sporadic temporally and spatially, resulting in an apparent scattered distribution of isolated and occasionally-detected constituents.

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

Low levels of VOCs, PCBs, and inorganics were detected in several wells across the GMA. In general however, higher constituent concentrations and more frequent detections were observed in or near the western portion of Oxbow Areas J and K, although PCBs and inorganic constituents were detected at various locations within each former oxbow area.

4.3.3 Actual Migration or Potential for Migration of Constituents Outside the GMA

Based on current and historical groundwater elevation data, groundwater flows toward the Housatonic River, which separates the two former oxbow areas. As such, constituents in groundwater within the GMA would be expected to migrate in a general southward direction across Former Oxbow Area J and in a general northward direction across Former Oxbow Area K.

Hydraulic conductivity data (as previously presented on Table 3 and Appendix C of the Groundwater Quality Monitoring Report for Spring 2002) indicate a wide range in conductivities at each former oxbow area. Hydraulic conductivities at Former Oxbow Area J ranged from 10.44 feet/day (at well GMA2-1) to 139.52 feet per day (at well GMA2-6), with a geometric mean of 45.57 feet per day. At Former Oxbow Area K, hydraulic conductivities varied from 7.98 feet/day (at well GMA2-9) to 138.47 feet per day (at well GMA2-5), with a geometric mean of 43.52 feet per day. The overall geometric mean of the calculated hydraulic conductivity values for GMA 2 is 44.65 feet per day.

Groundwater velocities were calculated for GMA 2 using the above referenced hydraulic conductivities as well as representative horizontal gradients. Groundwater elevation contours developed for the spring 2007 report were used in calculating the horizontal gradients for both the northern (Former Oxbow Area J) and southern (Former Oxbow Area K) portions of the GMA. The northern portion indicated a gradient of 0.024 feet/feet, with a slightly higher gradient (0.028 feet/feet) in the eastern side of this northern portion (where groundwater flow also slightly deflects towards the southwest). The southern portion indicated a similar gradient to the northern portion of 0.020 feet/feet. Using a variation of Darcy's Law to account for flow through porous media (v=Ki/n, where v is velocity, K is hydraulic conductivity, i is the gradient, and n is porosity), a range of velocities for GMA 2 were calculated. These calculations used a porosity range of 20 to 30 percent, which is typical for granular aquifers. To the north of the river, these calculated velocities ranged from a minimum of 0.84 feet per day to a maximum of 16.74 feet per day, with a geometric mean of 4.46 feet per day. Similar groundwater velocities were calculated in the southern portion, ranging between 0.53 feet per day and 13.85 feet per day, with a geometric mean of 3.55 feet per day. The geometric mean of the overall dataset for calculated GMA 2 groundwater velocities was 4.03 feet per day.

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

To the extent that constituents exist within the groundwater at GMA 2, they would migrate towards the Housatonic River (which separates the two former oxbow areas that comprise the GMA). A slight exception to this occurs in the eastern portion of Former Oxbow Area J, where groundwater flow patterns show a deflection to the southwest, following a topographic change in this area. Groundwater contour maps developed for the Site do not indicate a migration pathway from the GMA other than the direction of regional groundwater flow to the river. In addition, although a variation in hydraulic conductivities has been observed in site monitoring wells, the calculated geometric mean flow through the groundwater system is similar to that which would be typically observed for the types of materials within the subsurface at the GMA.

The perimeter monitoring wells downgradient of Former Oxbow Area J (GMA2-2, GMA2-6, J-1R, and OJ-MW-2) and Former Oxbow Area K (GMA2-4, GMA2-8, and GMA2-9) are well-situated to monitor the potential migration of constituents off-site toward the Housatonic River. Although a small number of constituents have been detected in these wells, only PCBs have been observed at concentrations at or near the GW-3 standards (and only in certain wells). Sampling results from these perimeter wells are discussed further in Section 4.8.

4.3.4 Assessment of the Adequacy of the Monitoring Locations Used During the Baseline Program

Eleven monitoring wells were sampled during the baseline monitoring program at GMA 2. These wells were installed at EPA-approved locations at upgradient and downgradient locations relative to each of the two former oxbows present at this GMA. Seven of these wells are located along the downgradient perimeters of the GMA, adjacent to the Housatonic River. Several wells were specifically located to monitor the downgradient edges of Former Oxbow Area J (wells GMA2-2, GMA2-6, J-1R, and OJ-MW-2) and Former Oxbow Area K (wells GMA2-4, GMA2-8, and GMA2-9).

In addition to the groundwater quality sampling points, GE has utilized one additional well (well OJ-MW-1) for groundwater elevation and NAPL monitoring and has routinely collected river elevation data from a monitoring point (SG-1) between the two former oxbow areas. No NAPL has been detected in any of the wells at GMA 2 monitored by GE.

Well J-1 was found to be unusable prior to the start of the baseline monitoring program at GMA 2 and was replaced by well J-1R. Well J-1 itself was proposed to be decommissioned as part of the remediation of former Oxbow J. However, the well could not be located at the start of remediation activities and was assumed to be destroyed.

General Electric Company Pittsfield, Massachusetts

Based upon a review of the groundwater flow directions and soil sampling results, GE has not identified any other areas where new wells would be warranted.

The data collected during the baseline monitoring program provide no indication that the wells used during that program were inadequate to characterize groundwater flow patterns or to delineate areas of constituent concentrations. In addition, no observations were made during the soil-related Removal Actions conducted between July and November 2006 at the Former Oxbows Area J and K RAAs that would indicate additional/previously-unknown potential sources that could impact groundwater quality. Accordingly, GE believes that the wells used during the baseline monitoring and interim monitoring programs were adequate to provide an accurate and complete profile of the groundwater within GMA 2.

4.3.5 Evaluation of Variations in Groundwater Quality

A review of the historical groundwater analytical data from the Site was completed in order to identify and assess variability in data between sampling events and potential causes of those variations. Since several of the constituents detected in groundwater during the baseline monitoring program were only found at very low concentrations during some of the sampling events, this evaluation focuses on the primary constituent groups of interest at the site (i.e., VOCs and PCBs), which were detected at a sufficient frequency to allow general comparisons between sampling events. Graphs of total VOC and total PCB concentrations are provided in Appendix B.

Four full baseline sampling events (Spring 2002, Fall 2002, Spring 2003, and Fall 2003, with completion at certain locations in Spring 2004), three interim sampling events (at certain wells in Spring 2004, Fall 2005, and Spring 2006), and two supplemental sampling events (at one well in Fall 2006 and Spring 2007) have been completed at GMA 2. The Spring 2004 sampling event constituted the fourth baseline sampling round at certain wells that were not sampled during each of the four prior baseline sampling events and also the initial interim sampling round at other wells that continued to be sampled for select constituents under the interim monitoring program.

VOCs have been detected in seven of the wells at least once since the inception of the baseline monitoring program. No VOCs were detected in three of the four wells located in Former Oxbow Area K (GMA2-5, GMA2-8, or GMA2-9) or in well GMA2-7 (located in the northeastern portion of Former Oxbow Area J). The majority of detections at the other monitoring wells are at trace concentrations near or below the method detection limit of the laboratory. The data show no overall trends or seasonal variations in the concentration versus time plots contained in Appendix B, although a slight apparent increase in total VOC concentrations was recorded during the two most recent sampling events at well GMA2-6

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

(during spring and fall 2003), based primarily on the detection of a low level of TCE during those monitoring rounds. However, the TCE concentrations detected in well GMA2-6 (with a maximum detected concentration of 0.091 ppm) are well below the applicable MCP GW-3 standard (5 ppm).

PCBs were also detected at least once in unfiltered samples analyzed from each of the 11 wells during the baseline sampling events, and observed in filtered samples from 10 of the 11 wells (no PCBs were detected in filtered samples from well OJ-MW-2). PCB levels ranged from significantly below the applicable MCP GW-3 standard (0.0003 ppm) to slightly above the standard at certain monitoring wells. Minor fluctuations in concentrations of PCBs were observed between each of the sampling events, but no clear increasing or decreasing trends are evident in the data. In two monitoring wells (GMA2-2 and J-1R), PCB concentrations were slightly higher in the 2003 sampling events compared to the prior year, but these fluctuations were not consistent from season to season. Although the PCB concentrations in the filtered samples from these two wells are below the GW-3 standard, they are each proposed below to be included in the long-term monitoring program based on their location downgradient of other wells where the standard was exceeded.

4.4 Identification of Wells Used to Measure Compliance with Performance Standards

The following monitoring wells have been utilized during the baseline monitoring period to assess groundwater conditions relative to the GW-2, GW-3, and NAPL Performance Standards. (See Figure 3.)

- GW-2 Performance Standards: Monitoring wells GMA2-2, GMA2-3, GMA2-5, and OJ-MW-2
- GW-3 Performance Standards: Monitoring wells GMA2-1 through GMA2-9, J-1R, and OJ-MW-2
- NAPL Performance Standards: Monitoring wells GMA2-1 through GMA2-9, J-1R, OJ-MW-1, and OJ-MW-2.

The compliance points relative to the GW-3 Performance Standards are limited to the downgradient perimeter wells at GMA 2. Those wells are: GMA2-2, GMA2-4, GMA2-6, GMA2-8, GMA2-9, J-1R, and OJ-MW-2. The remaining wells are upgradient perimeter wells (i.e., wells GMA2-1, GMA2-3, GMA2-5, and GMA2-7) that are not subject to compliance with the GW-3 Performance Standards.

General Electric Company Pittsfield, Massachusetts

4.5 Identification of Areas Where GW-2 Performance Standards Apply

Groundwater is subject to GW-2 classification if it occurs less than 15 feet below ground surface (bgs) and is located within 30 feet of an occupied building. The preliminary designation of wells GMA2-2, GMA2-3, GMA2-5, and OJ-MW-2 as GW-2 wells was established during the development of the original baseline monitoring program. Pursuant to Section 6.3.2 of Attachment H, a review of groundwater elevation data collected between April 2002 and April 2007 was completed to evaluate the appropriateness of designating these wells as GW-2 wells in the long-term monitoring program.

Well GMA2-2 is located on the south side of Former Oxbow Area J, approximately 60 feet south of the restaurant building in this area. Since April 12, 2002, the average depth to water at GMA2-2 has been 13.9 feet bgs and all measurements collected have shown a depth to groundwater of less than 15 feet below grade. Although this well is located greater than 30 feet from an occupied building, the well was classified as a GW-2 sentinel monitoring well at the inception of the baseline monitoring program. Based on the presence of groundwater at depths of less than 15 feet bgs, this well is considered representative of GW-2 groundwater.

Well GMA2-3, located in the northwestern corner of Former Oxbow Area J (along East Street), approximately 110 feet west of a retail gas station and 90 feet north of an automotive electrical repair shop, was also classified as a GW-2 sentinel monitoring well. Since April 12, 2002 the average depth to water measured at GMA2-3 has been 14.6 feet bgs, with a minimum of 12.49 feet bgs monitored on March 28, 2003, and a maximum of 15.82 feet bgs on October 16, 2003. Only 5 of 15 measurements have indicated a depth to groundwater of greater than 15 feet bgs, therefore the GW-2 classification for this well is appropriate.

Well GMA2-5 is located at the southern end of Former Oxbow Area K, approximately 10 feet east of the only occupied residence within GMA 2. Since April 12, 2002, the average depth to water at GMA2-5 has been 10.0 feet bgs and all data collected from this well have indicated a depth to groundwater of less than 15 feet. Therefore, well GMA2-5 is appropriately designated as a GW-2 well.

Well OJ-MW-2 is located on the eastern side of Former Oxbow Area J, approximately 40 feet south of the motorcycle sales and service center at this property. Since April 12, 2002, the average depth to water at OJ-MW-2 has been 14.4 feet bgs and all measurements except one (15.66 feet below grade in summer 2002) have shown a depth to groundwater of less than 15 feet below grade, indicating that the GW-2 classification is appropriate in this area.

General Electric Company Pittsfield, Massachusetts

No other occupied buildings are located within GMA 2. Therefore, the GW-2 monitoring network utilized during the baseline monitoring program was sufficient to monitor all areas where the GW-2 classification may apply. As described in Section 4.7 below, since no exceedances or near exceedances of the GW-2 standards were observed during the baseline monitoring period, no long-term monitoring is proposed at GMA 2 based on GW-2 considerations.

4.6 Statistical Assessment of Baseline and Other Historical Data

The available dataset for GMA 2 consists of the results of four full baseline sampling events (Spring 2002, Fall 2002, Spring 2003, and Fall 2003), with completion of the baseline sampling at certain locations in Spring 2004), and up to five interim or supplemental sampling events (at certain wells in Spring 2004, Fall 2005, Spring 2006, Fall 2006, and Spring 2007) GE has prepared a general statistical summary of the analytical results for all detected constituents at each monitoring well and performed a qualitative review of the concentration versus time graphs of selected data to identify potential trends (see Section 4.3.5 above). The summary statistics of the analytical data for each GMA 2 well are contained in Tables B-2 through B-12 in Appendix B.

The data summaries contained in Appendix B show that very few constituents were consistently detected in any of the GMA 2 monitoring wells. With the exception of PCE at well GMA2-2 and TCE at wells GMA2-6, J-1R and OJ-MW-2 (which were detected at low levels), most VOCs were only detected at trace concentrations during one or two sampling events at any given well. Only one SVOC was detected during the baseline monitoring program. Specifically, 1,2,4-trichlorobenzene was observed in well GMA2-3 (only during one of four sampling events) at a concentration well below the applicable GW-2 or GW-3 standards. PCBs, which were detected in most wells during three to five sampling events, were the most commonly detected constituent group. PCBs were also detected in unfiltered samples analyzed from each of the wells during the baseline sampling events and in filtered samples from all but one of the wells. Although no PCDD/PCDF congeners were detected during several sampling events, calculated Total TEQs are available for each sampling round due to the method used for the calculation of Total TEQs, which includes a value in the calculation of one-half of the detection limit for non-detected PCDD/PCDF congeners. Only one pesticide was detected during the baseline program. That detection was limited to a trace level in one monitoring well during a single sampling event (endrin at well GMA2-1 in fall 2002). Several inorganics were detected in the groundwater samples, the most common being barium.

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

The average detected concentrations of all constituents are below the applicable GW-2 and GW-3 standards at all wells, except for wells GMA2-1 (GW-3 - PCBs) and GMA2-3 (GW-3 - PCBs). However, well GMA2-3 was utilized as a GW-2 monitoring point during the baseline monitoring program and PCBs were analyzed only during two sampling events conducted in 2003. In Section 6.2.1, GE proposes to include each of these wells in the long-term monitoring program for PCB analyses (along with other wells that are located downgradient of wells GMA2-1 and GMA2-3, and selected wells with average PCB concentrations below the GW-3 standard where isolated PCB exceedances were observed during baseline monitoring).

4.7 Groundwater Results Relative to GW-2 Performance Standards

During the baseline groundwater quality monitoring program at GMA 2, groundwater samples were collected from four wells designated as GW-2 monitoring locations (i.e., wells GMA2-2, GMA2-3, GMA2-5, and OJ-MW-2). The groundwater analytical results for all constituents analyzed for at those wells are presented in Table B-1 of Appendix B. A total of five VOCs and one SVOC have been detected in at least one of these three wells during one or more baseline or interim sampling round. The results for each of these wells are discussed in detail below.

PCE was the only VOC consistently detected during the baseline monitoring program at well GMA2-2. PCE was detected during each of four sampling events at concentrations ranging from 0.0014 ppm (estimated concentration in spring 2003) to 0.0025 ppm (fall 2003). These concentrations are well below the GW-2 standard of 0.05 ppm for PCE. Three other VOCs were detected on a single occasion at this well: acetone (0.018 ppm in spring 2003), chloroform (0.0058 ppm in fall 2003), and toluene (estimated concentration of 0.0009 ppm in fall 2003). Each of these concentrations is well below the applicable GW-2 standard. No SVOCs have been detected at well GMA2-2.

At well GMA2-3, one VOC and one SVOC were detected during the baseline monitoring program, each during only one of four sampling events. Toluene was detected at an estimated concentration of 0.00098 ppm in fall 2003, which is significantly below the MCP GW-2 standard of 8 ppm. The SVOC 1,2,4-trichlorobenzene was detected at an estimated concentration of 0.00052 ppm in spring 2003, which is well below the listed GW-2 standard of 2 ppm.

No VOCs or SVOCs were detected during any of the four baseline sampling events conducted at well GMA2-5.

General Electric Company Pittsfield, Massachusetts

At well OJ-MW-2, TCE was the only VOC detected during the baseline monitoring program. TCE was detected during each of four sampling events at concentrations between 0.0029 ppm (estimated concentration in spring 2002) to 0.015 ppm (fall 2003). These concentrations are all below the GW-2 standard of 0.03 ppm for TCE. No other VOCs or SVOCs have been detected at well OJ-MW-2.

Thus, there were no exceedances or near exceedances of the GW-2 standards during the baseline monitoring period. Appendix B provides a summary of the analytical data collected from each monitoring well during the baseline monitoring program, including a comparison of the analytical results to the applicable GW-2 and/or GW-3 Standards and MCP UCLs for groundwater. The following table summarizes all GW-2 constituents detected in wells designated as GW-2 monitoring points during the baseline monitoring program at GMA 2 and compares the maximum detected concentrations in those monitoring wells to the MCP Method 1 GW-2 standards:

Constituent	MCP Method 1 GW-2 Standard (ppm)	Maximum Concentration Detected in GW-2 Wells at GMA 2 (ppm)	
Volatile Organic Compounds			
Acetone	50	0.018	
Chloroform	0.4	0.0058	
Tetrachloroethene (PCE)	0.05	0.0025	
Toluene	8	0.00098 J	
Trichloroethene (TCE)	0.03	0.015	
Semivolatile Organic Compounds			
1,2,4-Trichlorobenzene	2	0.00052 J	

Note:

Moreover, none of the four GW-2 wells has ever exhibited total VOC concentrations above 5 ppm (the level specified in the SOW as a notification level for GW-2 wells located within 30 feet of a school or occupied residential structure and as a trigger level for the proposal of interim response actions).

J - Indicates that the associated numerical value is an estimated concentration.

General Electric Company Pittsfield, Massachusetts

4.8 Groundwater Results Relative to GW-3 Performance Standards

During the baseline groundwater quality monitoring program at GMA 2, groundwater samples were collected from ten wells designated as GW-3 perimeter monitoring locations (i.e., wells GMA2-1, GMA2-2, GMA2-4 through GMA2-9, J-1R, and OJ-MW-2). Wells GMA2-1, GMA2-5, and GMA2-7 are upgradient perimeter wells, while the remaining GW-3 wells are downgradient perimeter wells that will ultimately serve as compliance points for the GW-3 standards. In addition, samples from GW-2 monitoring well GMA2-3 were analyzed for PCBs and cyanide during two baseline sampling events. The groundwater analytical results for all constituents analyzed for at those wells are presented in Table B-1 of Appendix B.

Exceedances of the MCP GW-3 standards were recorded for only one constituent during the baseline monitoring program at GMA 2. Specifically, the PCB concentrations detected in filtered samples from four wells exceeded the Method 1 GW-3 standard of 0.0003 ppm during two or three sampling rounds. Those wells are:

- GMA2-1: PCB exceedances were recorded at this upgradient perimeter well in spring 2003 (0.00050 ppm), fall 2005 (0.00032 ppm) and spring 2006 (estimated PCB concentrations of 0.00033 ppm and 0.0023 ppm in a duplicate sample). However, no PCBs were detected at this well in supplemental sampling events conducted in fall 2006 and spring 2007.
- GMA2-3: Exceedances of the GW-3 standard in this well were observed during supplemental PCB analyses conducted in spring 2003 (0.00056 ppm) and fall 2003 (0.00071 ppm). No analyses for PCBs have been conducted at this well since those supplemental sampling events.
- GMA2-4: Slight GW-3 exceedances were recorded at this well in fall 2003 (0.00032 ppm) and fall 2005 (0.00039 ppm). No PCBs were detected at this well during the most recent sampling event in spring 2006.
- GMA2-9: GW-3 exceedances were observed at this well in fall 2003 (0.00038 ppm) and fall 2005 (estimated PCB concentrations of 0.00038 ppm and 0.00063 ppm in a duplicate sample). The PCB concentration detected at this well during the spring 2006 interim sampling event (0.000076 ppm) was below the GW-3 standard.

There were no other exceedances of the GW-3 standard during the baseline monitoring period. Appendix B provides a summary of the analytical data collected from each monitoring well during the baseline monitoring program, including a comparison of the

General Electric Company Pittsfield, Massachusetts

analytical results to the applicable GW-2 and/or GW-3 Standards and MCP UCLs for groundwater. The following table summarizes all constituents detected at GMA 2 during the baseline monitoring period and compares the maximum detected concentrations in GMA 2 wells to the MCP Method 1 GW-3 standards:

Constituent	MCP Method 1 GW-3 Standard (ppm)	Maximum Concentration Detected at GMA 2 (ppm)			
Volatile Organic Compounds					
Acetone	50	0.018			
Chlorobenzene	1	0.00057 J			
Chloroform	10	0.0058			
1,1-Dichloroethane	20	0.00061 J			
Tetrachloroethene (PCE)	30	0.0025			
Toluene	4	0.0029 J			
Trans-1,2-Dichloroethene	50	0.0084			
Trichloroethene (TCE)	5	0.091			
Vinyl Chloride	50	0.0027			
Semivolatile Organic Compounds					
1,2,4-Trichlorobenzene	50	0.00052 J			
PCBs (Filtered Samples)	PCBs (Filtered Samples)				
Total PCBs	0.0003	0.0023 J			
Pesticides/Herbicides					
Endrin	0.005	0.0000042 J			
PCDDs/PCDFs					
Total TEQs (WHO TEFs)	1.0 x 10 ⁻⁷	2.2 x 10 ⁻⁸			
Inorganic Constituents (Filtered Samples)					
Antimony	8	0.0120 B			
Arsenic	0.9	0.00470 B			
Barium	50	0.140 B			

General Electric Company Pittsfield, Massachusetts

Constituent	MCP Method 1 GW-3 Standard (ppm)	Maximum Concentration Detected at GMA 2 (ppm)
Beryllium	0.05	0.000490 B
Cadmium	0.004	0.00200 B
Chromium	0.3	0.00290 B
Cobalt	Not Listed	0.00240 B
Copper	Not Listed	0.0130 B
Total Cyanide	0.03	0.00290 B
Mercury	0.02	0.000810
Nickel	0.2	0.00370 B
Selenium	0.1	0.00530 J
Silver	0.007	0.00120 B
Vanadium	4	0.00380 B
Zinc	0.9	0.130

Notes:

As seen on the above table, aside from the PCB exceedances discussed above, the maximum detected constituent concentrations at GMA 2 were generally well below the MCP GW-3 standards, often by one or more orders of magnitude.

4.9 Overall Assessment of Groundwater Quality Data

Graphs illustrating historical total VOC and total PCB concentrations for all wells sampled during the baseline monitoring program at GMA 2 are presented in Appendix B. GE has also performed general statistical reviews and trend assessments of the baseline groundwater data, as discussed below.

B - Indicates an estimated value between the instrument detection limit (IDL) and (PQL).

J - Indicates that the associated numerical value is an estimated concentration.

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

4.9.1 VOCs

As shown in the graphs in Appendix B, total VOC concentrations were well below the level (5 ppm) specified in the SOW as a notification level for GW-2 wells and as a trigger level for the proposal of interim response actions. No VOCs were detected in most of the wells located in Former Oxbow Area K or in the northeastern portion of Former Oxbow Area J. Where detected, most of the VOC results are at trace concentrations near or below the method detection limits of the lab.

A slight apparent increase in total VOC concentrations at well GMA2-6 during the last two sampling rounds conducted in 2003 is attributed to detections of TCE at this location at concentrations well below the applicable MCP GW-3 standard. Otherwise, the data show no overall trends or seasonal variations in the concentration versus time plots contained in Appendix B.

No GW-2 or GW-3 standards were exceeded at any of the GMA 2 wells during the baseline monitoring program. Even though there were two detections of TCE in well GMA2-6 during 2003 sampling events, the maximum detection of 0.091 ppm is significantly less than the GW-3 standard of 5 ppm. Similarly, although TCE was detected at each sampling event at well OJ-MW-2 (which is a GW-2 well), the maximum detection of 0.015 is significantly less than both the GW-2 and GW-3 standards of 0.03 ppm and 5 ppm, respectively. Therefore, long-term monitoring does not appear to be necessary to address the presence of VOCs at this GMA.

4.9.2 SVOCs

Only one SVOC (1,2,4-trichlorobenzene) was detected during the baseline monitoring program, and only at a single monitoring well (GMA2-3) during one of four sampling events. The concentration of 1,2,4-trichlorobenzene that was detected (0.00052 ppm) was many orders of magnitude below the applicable GW-2 or GW-3 standards (2 ppm and 50 ppm, respectively). As such, long-term monitoring does not appear to be necessary to address SVOCs at this GMA.

4.9.3 PCBs

Graphs showing total filtered PCB concentrations for the wells in GMA 2 are also presented in Appendix B. There were four wells where detected concentrations in particular sampling events during the baseline monitoring program exceeded the MCP Method 1 GW-3 standard for PCBs, including two wells (GMA2-1 and GMA2-3) where the average PCB concentration was above the applicable standard. Where exceedances occurred, the PCB

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

concentrations were generally only slightly above the 0.0003 ppm GW-3 standard. The only exception was at well GMA2-1 in spring 2006, where an estimated PCB concentration of 0.0023 was recorded. However, a duplicate sample collected during that sampling event exhibited a much lower PCB concentration (estimated at 0.00033 ppm).

4.9.4 PCDDs/PCDFs

There were no exceedances of the GW-3 standard for PCDD/PCDF total TEQs at any well in GMA 2 during the baseline monitoring program. At most locations, very few, if any PCDD/PCDF congeners were detected and the Total TEQs were calculated primarily based on detection limits utilized during the analyses.

4.9.5 Inorganics

As shown in Table B-1 of Appendix B, several wells contained various inorganic constituents at varying concentrations during the baseline monitoring program. Overall, barium was the most commonly detected inorganic, followed by zinc and nickel. However, the concentrations observed were all below the applicable GW-3 standards and appear to fall within typically-observed ranges for these naturally-occurring components in groundwater.

4.9.6 Concentration Trends

A review of the baseline analytical data was conducted to identify potential trends in the changes of constituent concentrations through time at each monitoring well, particularly potential trends relating to the concentrations of individual constituents that exceeded (or nearly exceeded) the applicable MCP Method 1 GW-2 or GW-3 standards at select monitoring wells during any of the prior baseline/interim monitoring program sampling events. These preliminary evaluations consisted of examining the ranges of detected constituent frequencies and concentrations for each well. The results of these evaluations are presented in Tables B-2 through B-12 of Appendix B.

As discussed in Section 4.3.4, no trends are evident in the concentrations of the only constituent (PCBs) that showed exceedances of applicable Performance Standards during baseline monitoring. In Section 6.2.1 below, GE proposes to continue to sample all wells that contained PCB concentrations above the GW-3 standard, along with certain downgradient locations, for PCBs during the long-term monitoring program to monitor compliance with the GW-3 Performance Standard.

General Electric Company Pittsfield, Massachusetts

As discussed in Section 6.8, additional statistical analyses are proposed to be conducted during the long-term groundwater monitoring program to determine the statistical significance of any potential trends identified during that program.

4.10 Evaluation of the Need for Follow-Up Investigations, Assessments, or Interim Response Actions

The baseline and interim monitoring programs did not reveal any significant data gaps concerning groundwater quality that would suggest the need for any further investigations or assessments other than the long-term monitoring program proposed herein. The groundwater quality and elevation data do not point to any other areas not already sampled that should now be sampled or any other analyses not already performed that should be performed. In addition, no observations were made during the soil-related Removal Actions at the Former Oxbows Area J and K RAAs that would indicate the need for additional groundwater investigations.

Similarly, the levels of substances found in the wells do not suggest the need for any interim response actions at GMA 2. The detected concentrations were generally very low in relation to any applicable GW-2 or GW-3 standards. At those few wells that have shown concentrations of constituents at levels greater than the applicable GW-3 Performance Standards, those exceedances have been isolated and intermittent and generally low level exceedances (i.e., the concentration did not exceed the applicable standard by a substantial amount). There have been no wells at which any detected concentration suggests the need for an interim response action apart from continued long-term monitoring at certain of these locations. If any exceedances of the groundwater-related Performance Standards persist at GMA 2, GE will evaluate the need for appropriate response actions and will propose any necessary actions for EPA approval.

General Electric Company Pittsfield, Massachusetts

5. Basis of Proposed Long-Term Monitoring Program

Section 7.3 of Attachment H to the SOW states that GE may discontinue long-term monitoring at particular wells within any GMA if the results of four consecutive groundwater monitoring events show no exceedances of the relevant Performance Standards and other reasons do not exist for retaining the wells in the long-term monitoring program (e.g., presence of NAPL in the well or constituent concentrations exceeding the applicable Performance Standards in upgradient groundwater). This provision of Attachment H therefore provides the basis upon which GE has identified monitoring points and constituents to be analyzed in the long-term monitoring program proposed in Section 6 below.

Specifically, locations were considered for inclusion in this program if:

- Exceedances of applicable MCP GW-2 or GW-3 standards were reported during the baseline monitoring program.
- The well is located downgradient of a location where exceedances of applicable MCP GW-2 or GW-3 standards were reported during the baseline monitoring program.
- A review of the available data indicates the potential presence of an increasing trend in the concentrations of certain constituents at levels approaching the applicable MCP GW-2 or GW-3 standards

GE has re-evaluated the historical data from all baseline monitoring program wells to assess whether additional monitoring to verify attainment of the groundwater-related Performance Standards is necessary. The results of these evaluations are discussed below.

With regard to GW-2 standards, as noted above, no exceedances or near exceedances of the GW-2 standards were observed at any of the GMA 2 GW-2 wells during the baseline monitoring period. Therefore, there is no basis for long-term monitoring based on GW-2 considerations.

With regard to GW-3 standards, GE initially reviewed the baseline groundwater quality data and identified all locations where the applicable GW-3 Performance Standards were exceeded during one or more sampling events. As discussed in Sections 4.7 and 4.8, those locations are limited to:

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

- GMA2-1: (GW-3 Standard for PCBs exceeded during the spring 2003, fall 2005, and spring 2006 baseline/interim sampling events).
- GMA2-3: (GW-3 Standard for PCBs exceeded during the spring 2003 and fall 2003 baseline sampling events).
- GMA2-4: (GW-3 Standard for PCBs slightly exceeded during the fall 2003 and fall 2005 baseline/interim sampling events).
- GMA2-9: (GW-3 Standard for PCBs exceeded during the fall 2003 and fall 2005 baseline/interim sampling events).

Based on these data and the requirement that constituent concentrations be below the applicable Performance Standards for four consecutive monitoring events to verify that the Performance Standards have been attained, continued sampling for PCBs at each of these wells is proposed.

Although well GMA2-3 was designated as a GW-2 monitoring point during the baseline monitoring period, continued sampling for PCBs at this well is proposed based on two rounds of data collected in 2003 showing GW-3 exceedances for PCBs. Based on the location of this well relative to the rest of the GMA, GE proposes that well GMA2-3 be designated as a GW-3 upgradient perimeter well.

In addition to considering whether the locations where exceedances of the applicable Performance Standards should continue to be monitored during the Long-Term Monitoring Program, GE also evaluated the need for additional monitoring downgradient of those locations. Since two of the wells identified above for long-term monitoring are upgradient perimeter wells (i.e., wells GMA2-1 and GMA2-3, as proposed above), GE has identified downgradient monitoring points relative to these locations that are proposed for inclusion in the Long-Term Monitoring Program. Specifically, wells GMA2-2 and GMA2-6 are proposed to be monitored for PCBs downgradient of the observed GW-3 exceedance at well GMA2-1 and well J-1R is proposed to be monitored for PCBs downgradient of well GMA2-3.

Finally, GE reviewed the baseline analytical data in order to identify any potential increasing trends in constituent concentrations approaching the applicable Performance Standards. Although an apparent increase in the TCE concentrations was observed at Well GMA2-6, during the last two baseline sampling rounds, the detected concentrations were well below the applicable Performance Standards. Accordingly, that well is not proposed to be included in the long-term monitoring program for additional VOC monitoring.

General Electric Company Pittsfield, Massachusetts

6. Proposed Long-Term Monitoring Program

6.1 General

In spring 2004, GE initiated the interim groundwater monitoring program as a continuation of the baseline monitoring program, to be conducted until completion of the soil-related Removal Actions at the Former Oxbow Area J&K RAA that comprises GMA 2. The interim monitoring program was designed to obtain additional data from locations where it is not yet clear whether the initial baseline groundwater quality results indicate that the well may require future monitoring in a long-term monitoring program. The Former Oxbow Areas J and K Removal Actions were completed in November 2006 and, as required by EPA, GE has evaluated all baseline monitoring data collected to determine the needs for a long-term monitoring program at GMA 2. As part of this evaluation, it was determined that the Removal Actions, which were generally limited to excavation of shallow PCB-impacted soil (except at Parcel K10-10-6, where a seven-foot removal was performed), and other removals directed at PAHs, lead, and antimony, would not likely result in a significant change to groundwater quality at the Site nor did GE revise the interpretation and/or extent of impacts previously noted at GMA 2. A summary of the proposed long-term groundwater sampling program is provided in Table 5.

6.2 Long Term Groundwater Monitoring Locations

As noted above, GE has evaluated the results from the baseline monitoring program to determine the needs for long-term groundwater quality monitoring at each GMA 2 monitoring well. The results of that data assessment and the wells proposed for inclusion in the long-term groundwater quality monitoring program modifications are discussed below. In addition to the groundwater quality sampling proposed herein, GE will measure groundwater elevations (including monitoring for the presence of NAPL) at a select number of existing wells that were previously included in the baseline monitoring program on a routine basis during the long-term monitoring program. The groundwater elevation and NAPL monitoring network is discussed in detail in Section 6.2.2.

6.2.1 Groundwater Quality Monitoring

Based on the foregoing analysis, GE proposes to conduct groundwater quality monitoring at seven wells in GMA 2 as part of the long-term groundwater monitoring program, as shown on Figure 4. GE proposes to sample four wells where particular samples collected during the baseline monitoring program exceeded the GW-3 standard for PCBs (i.e., wells GMA2-1, GMA2-3, GMA2-4, and GMA2-9). In addition, GE proposes to sample three monitoring wells located downgradient of those locations (i.e., wells GMA2-2 and GMA2-6, located

General Electric Company Pittsfield, Massachusetts

downgradient from well GMA2-1, and well J-1R, located downgradient from well GMA2-3) to verify that the GW-3 Performance Standards continue to be met at those locations.

Each of these wells is proposed to be sampled and analyzed for PCBs (filtered analyses only) on a semi-annual basis. If the data indicate that PCBs are below the MCP Method 1 GW-3 standard for four consecutive sampling events at a location (utilizing baseline monitoring data as appropriate), GE may propose to discontinue future GW-3 sampling at that well. However, GE will continue to sample downgradient wells GMA2-2, GMA2-6, and J-1R as long as their associated upgradient locations remain in the long-term monitoring program.

6.2.2 Groundwater Elevation and NAPL Monitoring

To assess groundwater flow conditions at the time of sampling, GE proposes continue to measure groundwater elevations at select monitoring wells in the vicinity of the wells proposed to be sampled during the long-term monitoring program on a semi-annual basis during the long-term monitoring program. As shown on Figure 4, the existing wells that are proposed be monitored are: GMA2-1 through GMA2-6, GMA2-8, GMA2-9 and J-1R. This monitoring will be conducted on a single day on or near the time that the proposed long-term groundwater sampling events are conducted. As part of these monitoring events, each well will also be monitored for the presence of NAPL. In addition, GE proposes to monitor river elevations at the SG-1 monitoring point on a semi-annual basis in conjunction with the proposed groundwater elevation monitoring.

6.3 Proposed Field Activities Schedule

The long-term groundwater quality monitoring program for GMA 2 will begin following EPA's approval of this Proposal, subject to obtaining revised access agreements with the property owners in a timely manner. If GE is unable to obtain access agreements from particular property owners after using "best efforts" (as defined in the CD) to do so, it will so advise EPA and MDEP and seek their assistance in obtaining such agreements pursuant to Paragraph 60.f(i) of the CD. If delays in obtaining access agreements will cause a delay in the schedule proposed above, GE will notify the Agencies and propose for EPA approval a revised schedule for initiating the long-term monitoring program.

As noted above, GE proposes to conduct groundwater quality monitoring on a semi-annual basis during the long-term program at the wells described above. The time periods for semi-annual water quality sampling were chosen to adequately assess seasonal variation which may occur during the monitoring period. This schedule was selected to obtain data during presumed annual high and low water table conditions and is consistent with the

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

spring/fall groundwater monitoring schedule previously utilized during the baseline monitoring program at GMA 2. GE will attempt to collect groundwater analytical samples during the months of April and October, but may, on occasion, conduct these sampling events during the prior month or the next month from the target date if scheduling issues or other unforeseen factors necessitate alterations to the schedule. GE will make best efforts to avoid scheduling groundwater monitoring at times and locations at which the data obtained could be impacted by ongoing soil/sediment response actions or other activities within these non-GE-owned former oxbow areas. In addition, GE may propose a modified sampling schedule for selected wells following evaluation of the analytical data as the long-term monitoring program progresses.

GE proposes to conduct groundwater level monitoring at the monitoring program wells described herein during periods coinciding with groundwater sample collection. All wells that are proposed to be monitored for groundwater levels (i.e., wells GMA2-1 through GMA2-6, GMA2-8, GMA2-9 and J-1R) and the Housatonic River staff gauge will be measured during a single day. The data obtained will be utilized to prepare a groundwater elevation contour map representing conditions during the sampling event.

6.4 Monthly CD Reporting

In the monthly progress reports for overall work at the Site, GE will provide the observations and results of the GMA 2 groundwater quality monitoring program as follows:

Following a groundwater and/or surface water elevation monitoring event, the following information will be added to the next monthly progress report for the Site:

- A listing of the locations that were monitored, and the depths from the measuring point to water and groundwater/NAPL interfaces (if present);
- If NAPL was observed in any well at a thickness of greater than or equal to ¹/8-inch but less than ½-inch, a listing of such well(s), unless the results are consistent with the types, nature, and quantities of NAPL which were previously observed and reported to the Agencies; and
- If NAPL was observed to be discharging to any surface water and creating a sheen on the water, a listing of such location(s).

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

Following a groundwater sampling event, the following information will be added to the next monthly progress report for the Site:

- Each of the items listed above for the associated groundwater elevation monitoring event; and
- A listing of the wells which were sampled during the event and the analyses to be conducted.

Following receipt of preliminary analytical results from a groundwater sampling event, the following information will be added to the next monthly progress report for the Site:

- The analytical results from that monitoring event;
- An identification of any wells where the analytical data indicate an exceedance of a groundwater UCL; and
- An identification of any wells monitored for GW-3 groundwater in which the analytical
 data indicate an exceedance of an applicable GW-3 standard. These include not only
 the perimeter wells, but also, as an early warning mechanism, any of the
 general/source area sentinel wells.

Following receipt of final analytical data packages from a groundwater sampling event, the schedule for submittal of the next Monitoring Event Evaluation Report or Long-Term Trend Evaluation Report will be identified in the next monthly progress report for the Site.

6.5 Notification and Interim Response Actions

6.5.1 Groundwater Quality-Related Notifications

If an exceedance of a groundwater UCL is indicated in a groundwater sample from a given well and such exceedance was not previously observed, GE will notify EPA and MDEP within fourteen days of obtaining knowledge of such an exceedance. GE will also provide the data from each such event in the next monthly progress report for overall work at the Site. Subsequent exceedances of a UCL for a given well will be identified in the next monthly report.

Upon receipt of sampling data from each monitoring event, GE will also evaluate whether or not the applicable GW-3 Performance Standards have been achieved at the compliance monitoring well locations and, if not, the progress toward attainment. GE will provide

General Electric Company Pittsfield, Massachusetts

notification of any previously unobserved exceedance of the applicable GW-3 Performance Standards from each such event in the next monthly progress report for overall work at the Site. An evaluation of potential response actions relating to any exceedances of the GW-3 Performance Standards at compliance point locations will be made in the context of the long-term trend evaluations, as discussed in Section 6.6 below.

6.5.2 NAPL-Related Notifications

During the Long-Term Monitoring Program, if NAPL is observed to be discharging to any surface water or creating a sheen on the water in a location in which such NAPL discharge was not previously observed or measures are not in place to effectively contain the sheen, GE will notify EPA and MDEP within two hours of obtaining knowledge of such observation. This will be followed by written notice to EPA within seven (7) days. The written notification will include a proposal to EPA for interim response actions to contain such discharge. Upon EPA approval, GE will conduct the approved interim response actions to contain the NAPL discharge.

If NAPL is observed to be discharging to any surface water or creating a sheen on the water in a location in which such NAPL discharge was previously observed and measures are in place to contain the sheen, GE will notify EPA of the continued presence of such NAPL in the next monthly progress report for overall work at the Site.

For groundwater, if a NAPL thickness of greater than or equal to 1/2-inch is observed in any monitoring well, GE will notify EPA and MDEP within seventy-two hours of obtaining knowledge of such a condition, unless such conditions are consistent with the types, nature, and quantities of NAPL which were previously observed and reported to the Agencies. This notification will be followed by written notice to the EPA within 60 days. The written notification will include a proposal to EPA for interim response actions to be conducted which may include NAPL sampling, additional assessment/monitoring, or NAPL removal activities. Upon EPA approval, GE will conduct the approved interim response actions. If a NAPL thickness of greater than or equal to 1/8-inch, but less than 1/2-inch is observed in a monitoring well, GE will notify EPA and MDEP in the next monthly progress report, unless the results are consistent with the types, nature, and quantities of NAPL which have previously been observed and reported to the Agencies.

General Electric Company Pittsfield, Massachusetts

6.6 Reporting Requirements

6.6.1 Monitoring Event Evaluation Reports

Following completion of each long-term groundwater monitoring event, GE will prepare and submit to EPA a Monitoring Event Evaluation Report that provides a summary of the activities performed and results obtained during the monitoring period, and all the information required by Section 7.2.1 of Technical Attachment H to the SOW. An outline of a representative Monitoring Event Evaluation Report is provided in Appendix D.

Specifically, upon receipt of data from each monitoring event, GE proposes, on a locationby-location basis, to compare the data from the current monitoring event with the prior monitoring data and evaluate using the statistical methods proposed in Section 6.8 below. During the first two years of the long-term monitoring program, GE will compare the results from each event with the "baseline" monitoring data. The statistical analyses will only be presented over the entire groundwater quality database for each well until a sufficient number of seasonal sampling events have been conducted to provide the necessary data to evaluate potential trends between comparable sampling periods (i.e., results from sampling conducted during a similar time of year). Thereafter, as the groundwater database is updated, GE will compare the results from each monitoring event to the entire prior database, focusing on long-term temporal or spatial trends. These comparisons will be performed to identify instances in which the current data indicate a potential increase in the concentrations of dissolved-phase constituents relative to prior monitoring results. In making these comparisons, GE will focus in particular on whether the data from the monitoring wells indicate an increase in the potential for such constituents to migrate outside the boundaries of the GMA and whether such migration is already occurring.

If a statistically significant increase in dissolved-phase constituent concentrations is detected at any well in the most recent sampling results and relative to prior data and the constituent is detected at a concentration approaching the applicable Performance Standard (i.e., greater than 50 % of the applicable standard), GE will conduct the following activities:

- An evaluation of overall groundwater conditions within the GMA to ascertain if the elevated sampling data were detected elsewhere and uniformly or if the elevated data are isolated to a specific monitoring location;
- A review of the recent sampling results with respect to the sampling data available from comparable sampling periods (i.e., results from sampling conducted during a similar time of year); and

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

• An evaluation of the potential presence of an upgradient "source" that could explain the increase in groundwater concentrations.

GE will provide a possible explanation(s) for any such observed increase in concentrations in the sampling data. If EPA determines that the elevated sampling data are not due to inherent variations in the field or laboratory procedures or to typical historical variations in the monitoring results, GE will propose to EPA for approval one of more of the following actions, and will implement the EPA approved actions:

- Re-sampling of the location and constituent(s) of interest.
- Increasing the frequency of monitoring at the location(s) in question.
- Additional evaluation activities in the area of interest, including but not limited to, sampling of nearby existing monitoring wells and/or the installation and sampling of new permanent or temporary monitoring wells.
- Evaluation of whether the groundwater in which the increase has been found is
 affecting any adjacent surface waters, sediments and/or biota, including, if appropriate,
 sampling of such surface waters, sediments, sediment pore water using seepage
 meters, and biota, including toxicity testing.
- Development of alternative GW-3 standards based on a site-specific risk assessment related to the constituent(s) of interest.
- Evaluation of active response actions to contain and/or recover the affected groundwater or to address potential sources if identified.

As discussed in Section 7.2 below, Spring and Fall Monitoring Event Evaluation Reports, covering activities conducted in the spring or fall of each year, are proposed to be submitted within 60 days of receipt of data from the last sampling event, except for seasons after which Long-Term Trend Evaluation Reports are scheduled to be submitted. For those seasons (i.e., beginning with fall 2009 if long-term sampling is initiated in fall 2007), the information typically provided in the Monitoring Event Evaluation Reports will be incorporated into the Long-Term Trend Evaluation Reports, as proposed in Section 6.6.2 below, as applicable.

General Electric Company Pittsfield, Massachusetts

6.6.2 Long-Term Trend Evaluation Reports

Following completion of each two year long-term trend evaluation period, GE proposes to prepare and submit to EPA a Long-Term Trend Evaluation Report in place of a Monitoring Event Evaluation Report. The Long-Term Trend Evaluation Report will provide a summary of the activities performed and results obtained during the most recent monitoring period, and all the information required by Section 7.2.2 of Technical Attachment H to the SOW, and will be submitted 75 days after receipt of data from the last sampling event.

Specifically, at two-year intervals during the Long-Term Monitoring Program beginning with the fall 2009 monitoring period (assuming that sampling is initiated in fall 2007) until Performance Standards have been attained at GMA 2, GE will conduct an evaluation of long-term groundwater quality trends. This evaluation will initially involve comparison of the groundwater monitoring results from the period since the last evaluation to the applicable groundwater Performance Standards for the GMA. In the event that the Performance Standards then being applied are Method 1 (or 2) standards and such standards are exceeded, GE may develop and propose to EPA for approval risk-based alternative groundwater Performance Standards for use in these comparisons, based on a site-specific risk evaluation, taking into account, as appropriate, relevant factors as described in Section 4.1 of Technical Attachment H to the SOW.

In the event that the long-term trend evaluations indicate that groundwater quality continues to exceed the applicable Performance Standards (including risk-based alternative standards approved by EPA, if any), GE will evaluate appropriate response actions, as discussed in Section 6.7 below.

In the long-term trend evaluations, GE will also evaluate whether modifications to the Long-Term Monitoring Program are appropriate, considering temporal and spatial groundwater quality trends, the levels of detected constituents, statistical evaluations, groundwater flow patterns, and any alternative standard evaluations, and propose such modifications to EPA for approval.

The long-term trend evaluation will include a statistical analysis focusing on intra-well comparisons for selected critical parameters (i.e., constituents of interest). As sufficient data becomes available, statistical evaluations, as approved by EPA, will be made regarding the presence or absence of seasonality and trend. In wells exhibiting no trends, data means and variances will be computed for constituents of interest for which there are greater than 50 percent detections for a particular constituent. Once trends are identified, plotting of the data and regression analysis will be performed, as discussed in Section 6.6.1above. A

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

moving average presentation of regularly spaced data may also be presented as an alternative to directly correlating data for seasonality.

6.7 Application of Performance Standards to Long-Term Monitoring Data

Upon receipt of sampling data from each monitoring event, GE will evaluate whether or not the Performance Standards have been attained at the appropriate monitoring locations and, if not, the progress toward attainment. GE will also comply with all other requirements of Section 7.2.1 of Technical Attachment H to the SOW.

If the long-term trend evaluations indicate that groundwater quality continues to exceed the groundwater quality Performance Standards (which may be either the Method 1 (or 2) standards or risk-based alternative standards approved by EPA) at the compliance points for such Performance Standards, GE will evaluate appropriate response actions and propose such response actions to EPA for approval. Such response actions may include continued monitoring, other assessment activities, or active response actions to attain the Performance Standards. Upon EPA approval, GE will implement the EPA-approved response actions. Additionally, GE will evaluate the appropriateness of modifications to or, if warranted, discontinuance of the groundwater monitoring program consistent with the requirements of Technical Attachment H to the SOW. GE will also comply with all other requirements of Section 7.2.2 of Technical Attachment H to the SOW.

GE may propose to discontinue long-term monitoring at particular wells within any GMA, subject to approval by EPA, if the following criteria are met: (1) Long-term monitoring at particular sentinel wells may be discontinued if the results of four consecutive groundwater monitoring events show no exceedances of the relevant Performance Standards; (2) Long-term monitoring at particular perimeter wells may be discontinued if the results of four consecutive groundwater monitoring events show no exceedances of the applicable Performance Standards and other reasons do not exist for retaining such wells in the Long-Term Monitoring Program (e.g., the presence of NAPL or constituent concentrations exceeding the applicable Performance Standards in upgradient groundwater).

GE will continue the Long-Term Monitoring Program at GMA 2, with any modifications approved by EPA, until such time as the data indicate that the applicable Performance Standards have been consistently achieved at the GMA and other reasons do not exist for continuing long-term groundwater monitoring (e.g., the presence of NAPL or constituent concentrations exceeding the applicable Performance Standards in upgradient groundwater).

General Electric Company Pittsfield, Massachusetts

6.8 Description of Statistical Techniques to be Employed

Groundwater data may exhibit monotonic trends in concentrations over time (i.e., long-term increasing or decreasing concentrations) as well as seasonal cycles. Factors that may contribute to trends and cycles include hydrogeologic characteristics, groundwater movement, natural attenuation, and changes in the original source(s) of the constituent.

To assess potential trends, various statistical methods can be utilized depending on the extent of the overall sampling period and the frequency of sampling events within the sampling period. Graphical representations such as a simple plot of concentration data versus time may reveal long-term cyclical patterns as well as pulses, both of which may explain temporal trends. Statistical analysis can be performed on the data utilized in preparation of the trend plots for each well to quantify the relationship between time and constituent concentrations. One common technique is to use simple linear regression to detect linear relationships between the two variables. This technique is easily calculated and interpreted. Several alternative statistical techniques that have been described in documents prepared by EPA and others (see references in Section 6.8.4) may also be performed to evaluate temporal trends in GMA 2 groundwater during the long-term monitoring program and to determine the statistical significance of any potential trends that are identified: (1) Mann-Kendall Test; (2) Sen's slope estimator; and (3) Seasonal Kendall Tau estimator. These methods are described in Sections 6.8.1 through 6.8.3 below.

For locations where duplicate or split samples are collected and analyzed, an average concentration of all reported results is proposed to be utilized in the statistical analyses to represent the sampling event where multiple samples were analyzed. For sampling rounds where a constituent subject to statistical analysis is not detected, a value corresponding to one-half of the reported detection limit is proposed to be utilized in the calculations. Although the non-parametric methods proposed for trend analysis can be applied to data sets with a moderate amount of non-detected results (USEPA, 2006b), the evaluation of data sets with greater than 50% of such results would primarily reflect the changes in the detection limits, rather than detected concentrations of constituents. In particular, the confidence interval for Sen's slope estimator can be influenced by non-detected results. GE will track the detection frequency of all constituents subject to statistical analysis and will identify locations where the results may be biased by the presence of non-detect data points.

General Electric Company Pittsfield, Massachusetts

6.8.1 Mann-Kendall Test

The Mann-Kendall Test is a procedure that does not assume any particular distribution form and can accommodate trace values or values below the detection limit by assigning them a common value (USEPA, 2006a). The test has the flexibility to be modified to account for multiple observations per time period, multiple sampling locations, and seasonality (USEPA, 2006a). For each data set consisting of individual well observations, a series of pairwise slopes are calculated by determining the change in concentration divided by the time interval between sequential sampling events. A test statistic "S" is computed based on the difference between the number of pairwise slopes that are positive minus the number that are negative (USEPA, 2006a). If S is a large positive value, then there is evidence of an increasing trend in the data (USEPA, 2006a).

For small data sets (n ≤40), the test statistic is the difference between the number of strictly positive differences and the number of strictly negative differences (USEPA, 2006a). If there is an underlying upward trend, then these differences will tend to be positive and a sufficiently large value of the test statistic will suggest the presence of an upward trend (USEPA, 2006a). A corresponding p-value (for 95% confidence), based on the sample size and test statistic S is obtained from a reference table to confirm the trend.

For large data sets (n >40), a normal approximation is applied to the test procedure. The S test statistic is calculated the same way as before. The variance for the S test statistic is added to the calculation steps to provide the means to calculate a new Z test statistic for comparison to the critical values for a standard normal distribution (z1- α). For testing the hypothesis, an increasing trend is found when Z > z1- α and a decreasing trend is found when Z < 0 and the absolute value of Z > z1- α (USEPA, 2006a).

6.8.2 Sen's Slope Estimator

The Sen's slope estimator is a non-parametric alternative for estimating a slope (USEPA, 2006a). The approach involves computing slopes for all the pairs of ordinal time points and then using the median of these slopes as an estimate of overall slope (USEPA, 2006a). This approach is insensitive to outliers and can accommodate data sets with a limited number of nondetects (i.e., values less than sample reporting limits) (USEPA, 2006a).

The procedure assumes that there are n time points (or n periods of time), and Xi represents the data value for the ith time point. If there are no missing data, there will be n(n-1)/2 possible pairs of time points (i, j) in which i > j. The slope of such a pair is called a

General Electric Company Pittsfield, Massachusetts

pairwise slope, bij, and is computed as bij = (Xi - Xj) / (i - j). Sen's slope estimator is the median of the n(n-1)/2 pairwise slopes (USEPA, 2006a).

No significant trend is found when the sum of the positive and negative slopes (\sum bij) is such that $1 > \sum$ bij > -1. A positive trend is found when \sum bij > 1 and a negative trend when \sum bij < -1. A 95% confidence interval is applied to the median slope estimate.

6.8.3 Seasonal Kendall Test

If seasonal cycles are present in data, tests for trend that remove these cycles or are not affected by them should be used (Gilbert, 1987). The Seasonal Kendall (SK) test was developed by the U.S. Geological Survey (USGS) and is a standard test for evaluating seasonal patterns in water quality data. This test has been applied since the early 1980s to the USGS collection of long-term water-quality records across the U.S. USGS presently maintains a computer program called Estimate Trend (ESTREND) on a download site which is available to the public (http://pubs.usgs.gov/sir/2005/5275/).

The SK test is a non-parametric test for monotonic trend in water quality. This test is a generalization of the Mann-Kendall test and reduces potential seasonal differences in concentration by only comparing data from similar seasons when evaluating trend (Schertz, Alexander, and Ohe, 1991). Stated differently, the SK test is used to see if concentration changes in a consistent direction over time (i.e., exhibits a monotonic trend). The test performs the Mann-Kendall trend test for individual seasons of the year and then combines the individual results into one overall test. "Season" here is defined by the analyst and typically represents a month (i.e., 12 seasons per year) or a quarter (i.e., 4 seasons per year) (Helsel, Mueller, and Slack, 2006). For this analysis, seasons are proposed to be defined as quarters. Since groundwater sampling activities at GMA 2 have been conducted on a semi-annual basis, the SK test will be focused on the spring and fall quarters, but will allow evaluation of the winter and summer quarters if the sampling schedule is modified in the future.

In time-series analysis, it is important to consider if the data exhibit serial correlation, which refers to the relationship between concentrations measured in consecutive sampling events. If data exhibit serial autocorrelation, individual sampling events are not independent. The SK test can produce an "adjusted p-value" that corrects for potential serial correlation. This adjustment to the p-value is preferred because when serial correlation is present in the data, the p-value tends to be biased low, and one could incorrectly conclude the presence of a seasonal pattern in the data. Hirsch and Slack (1984) recommend using the adjusted p-value when there is more than 10 years of data.

ARCADIS BBL

General Electric Company Pittsfield, Massachusetts

In addition to calculating a p-value for seasonality, the ESTREND also includes the slope and intercept of Kendall's trend line. The line represents the overall trend of the median concentration values for the time span of the dataset. The line is provided in the form:

Y = Intercept + (Slope x Time)

where Y = the median concentration at a given time; Intercept = the intercept of the line at time of the initial sample; Slope = change in the median concentration over time; and Time = the year of the sample (as decimal year) – initial water year (as decimal year).

6.8.4 References

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, New York.

Helsel, D.R. 2005. Non-detects and Data Analysis: Statistics for Censored Environmental Data. Wiley, New Jersey.

Helsel, D.R., Mueller, D.K., and Slack, J.R., 2006, Computer program for the Kendall family of trend tests: U.S. Geological Survey Scientific Investigations Report 2005–5275, 4 p.

Hirsch, R.M., and Slack, J.R., 1984, A nonparametric trend test for seasonal data with serial dependence: Water Resources Research v. 20, p. 727–732.

Schertz, Terry L., Schertz, Richard B. Alexander, and Dane J. Ohe. 1991. The Computer Program Estimate Trend (ESTREND), a System for the Detection of Trends in Water-Quality Data. U.S. Geological Survey Water-Resources Investigations Report 91-4040.

United States Environmental Protection Agency (USEPA). 1989. Statistical Analysis of Ground-water Monitoring Data at RCRA Facilities. Interim Final Guidance. Office of Solid Waste, Waste Management Division. April.

USEPA. 1992. Statistical Analysis of Ground-water Monitoring Data at RCRA Facilities. Addendum to Interim Final Guidance. Office of Solid Waste, Permits and State Programs Division. July. http://www.epa.gov/swertio1/chartext_edu.htm#stats.

USEPA. 2006a. Data Quality Assessment: Statistical Methods for Practitioners. EPA QA/G-9S. Office of Environmental Information. EPA/240/B-06/003. February.

General Electric Company Pittsfield, Massachusetts

USEPA. 2006b. On the Computation of 95% Upper Confidence Limit of the Unknown Population Mean Based Upon Data Sets with Below Detection Limit Observations. Prepared by A. Singh, R.W. Maichle, and S.E. Lee for USEPA ORD NERL, Las Vegas, NV. EPA/600/R-06/22. March.

General Electric Company Pittsfield, Massachusetts

7. Schedule of Future Activities

7.1 Field Activities Schedule

If approved by EPA, GE will conduct the initial long-term groundwater quality sampling event in October 2007. A round of groundwater elevation monitoring at the GMA 2 wells proposed in Section 6.2.2 will also be performed at that time.

Prior to performance of these field activities, GE will provide EPA with 7 days advance notice to allow the assignment of oversight personnel. The schedule discussed above was developed under the assumption that GE will be able to obtain permission from the owners of the properties that comprise GMA 2 to conduct the monitoring and sampling activities in advance of their estimated performance dates. If that is not the case, GE will notify EPA of potential schedule impacts due to delays in obtaining such access to the properties.

7.2 Reporting Schedule

GE will continue to provide the results of preliminary groundwater analytical data in its monthly reports on overall activities at the GE-Pittsfield/Housatonic River Site. Those reports will also document the schedules for submittal of the Monitoring Event Evaluation Reports and Long-Term Trend Evaluation Reports, which are contingent upon receipt of the final analytical data packages from the groundwater sampling events, as discussed below.

GE proposes to submit the Fall 2007 Monitoring Event Evaluation Report for GMA 2 60 days following receipt of the final analytical data packages from the event. That report will present the final, validated fall 2007 sampling results and a brief discussion of the results, including the evaluations of the data discussed in Section 6.6.1 and any proposals to further modify the long-term monitoring program, if necessary. An outline of a typical report is provided in Appendix D hereto.

Subsequent semi-annual Monitoring Event Evaluation Reports for GMA 2 will be submitted within 60 days following receipt of the final analytical data packages from each event.

In addition, GE proposes to submit a Long-Term Trend Evaluation Report in place of a Monitoring Event Evaluation Report, at the completion of the fall 2009 sampling round (assuming that sampling begins in fall 2007). That report will present the final, validated fall 2009 sampling results and a brief discussion of the results, including the evaluations of the data discussed in Section 6.6.2 and any proposals to further modify or terminate the long-term monitoring program, as warranted.

General Electric Company Pittsfield, Massachusetts

Subsequent Long-Term Trend Evaluation Reports for GMA 2 will be prepared at two-year intervals over the duration of the long-term monitoring program at GMA 2. Each report will be submitted within 75 days following receipt of the final analytical data packages from the latest monitoring event included in the two-year evaluation cycle.

Tables

Table 1
Baseline Monitoring Program Summary

Baseline Assessment Final Report and Long Term Monitoring Program Proposal Groundwater Management Area 2 General Electric Company - Pittsfield, Massachusetts

Well Number	Monitoring Well Usage	Baseline Sampling	Interim Sampling	Comments
GMA2-1	GW-3 Perimeter (Upgradient)	Spring 2002 - Fall 2003	Spring 2004, Fall 2005, Spring 2006, Fall 2006, Spring 2007	Sampled for PCBs in Spring 2007
GMA2-2	GW-2 Sentinel/ GW-3 Perimeter (Compliance Point)	Spring 2002 - Fall 2003		
GMA2-3	GW-2 Sentinel (Upgradient)	Spring 2002 - Fall 2003		Supplemental analyses for PCBs and cyanide conducted in Spring 2003 and Fall 2003
GMA2-4	GW-3 Perimeter (Compliance Point)	Spring 2002 - Fall 2003	Spring 2004, Fall 2005, Spring 2006	
GMA2-5	GW-2 Sentinel/ GW-3 Perimeter (Upgradient)	Spring 2002 - Fall 2003		
GMA2-6	GW-3 Perimeter (Compliance Point)	Spring 2002 - Fall 2003		
GMA2-7	GW-3 Perimeter (Upgradient)	Spring 2002 - Spring 2004		
GMA2-8	GW-3 Perimeter (Compliance Point)	Spring 2002 - Fall 2003		
GMA2-9	GW-3 Perimeter (Compliance Point)	Spring 2002 - Fall 2003	Spring 2004, Fall 2005, Spring 2006	
J-1R	GW-3 Perimeter (Compliance Point)	Spring 2002 - Fall 2003		
OJ-MW-1	Groundwater Elevation Monitoring			
OJ-MW-2	GW-2 Sentinel/ GW-3 Perimeter (Compliance Point)	Spring 2002 - Spring 2004		
Staff Gauge	Surface Water Elevation Monitoring			

Notes:

^{1.} All monitoring locations were utilized for groundwater or surface water elevation monitoring on a semi-annual basis during the baseline and interim monitoring periods.

Table 2
Monitoring Well Construction

Baseline Assessment Final Report and Long Term Monitoring Program Proposal Groundwater Management Area 2 General Electric Company - Pittsfield, Massachusetts

Well Number	Survey Co Northing	oordinates Easting	Well Diameter (inches)	Ground Surface Elevation (feet AMSL)	Measuring Point Elevation (feet AMSL)	Depth to Top of Screen (feet BGS)	Screen Length (feet)	Top of Screen Elevation (feet AMSL)	Base of Screen Elevation (feet AMSL)
GMA2-1	534402.60	135510.20	2.00	988.30	991.36	13.80	10.00	974.50	964.50
GMA2-2	534264.30	135725.00	2.00	988.10	991.19	12.94	10.00	975.16	965.16
GMA2-3	534303.30	135295.50	2.00	991.59	991.48	8.59	10.00	983.00	973.00
GMA2-4	534167.60	135730.00	2.00	980.30	983.41	5.20	10.00	975.10	965.10
GMA2-5	533956.60	135712.80	2.00	986.11	985.85	5.98	10.00	980.13	970.13
GMA2-6	534296.40	135526.00	2.00	986.30	989.73	10.13	10.00	976.17	966.17
GMA2-7	534452.30	136034.50	2.00	989.84	989.64	8.49	10.00	981.35	971.35
GMA2-8	534235.50	135923.10	2.00	978.70	982.30	4.00	10.00	974.70	964.70
GMA2-9	534006.00	135431.40	2.00	978.10	981.29	4.00	10.00	974.10	964.10
J-1R	534035.60	135266.60	2.00	988.61	988.25	11.55	10.00	977.06	967.06
OJ-MW-1	534463.40	136305.70	1.00	994.68	994.47	9.30	10.00	985.38	975.38
OJ-MW-2	534318.38	136180.30	1.00	991.90	991.64	9.60	10.00	982.30	972.30
Staff Gauge					989.82				

Notes:

- 1. feet AMSL = feet above mean sea level.
- 2. feet BGS = feet below ground surface.
- 3. -- indicates that a value does not apply.

Table 3
Groundwater Elevation Data - Spring 2007

Baseline Assessment Final Report and Long Term Monitoring Program Proposal Groundwater Management Area 2

General Electric Company - Pittsfield, Massachusetts

Well Number	Location	Spring 2007 ⁽¹⁾ Groundwater Elevation
GMA2-1	Oxbow Area J	976.83
GMA2-2	Oxbow Area J	975.74
GMA2-3	Oxbow Area J	979.03
GMA2-4	Oxbow Area K	976.06
GMA2-5	Oxbow Area K	978.50
GMA2-6	Oxbow Area J	976.53
GMA2-7	Oxbow Area J	977.49
GMA2-8	Oxbow Area K	975.85
GMA2-9	Oxbow Area K	975.58
J-1R	Oxbow Area J	975.35
OJ-MW-1	Oxbow Area J	983.97
OJ-MW-2	Oxbow Area J	979.68
Staff Gauge	Housatonic River	974.50

Notes:

1. Spring 2007 Groundwater elevation and river elevation data was collected on 4/23/2007.

Table 4 Spring 2007 Groundwater Analytical Results

Baseline Assessment Final Report and Long Term Monitoring Program Proposal Groundwater Management Area 2
General Electric Company - Pittsfield, Massachusetts
(Results are presented in parts per million, ppm)

Sample ID:	Method 1 GW-3	MCP UCL	GMA2-1
Parameter Date Collected:	Standard	for GroundWater	03/08/07
PCBs-Filtered			
Aroclor-1016	Not Listed	Not Listed	D(0.00010) J [ND(0.00010
Aroclor-1221	Not Listed	Not Listed	D(0.00010) J [ND(0.00010
Aroclor-1232	Not Listed	Not Listed	D(0.00010) J [ND(0.00010
Aroclor-1242	Not Listed	Not Listed	D(0.00010) J [ND(0.00010
Aroclor-1248	Not Listed	Not Listed	D(0.00010) J [ND(0.00010
Aroclor-1254	Not Listed	Not Listed	D(0.00010) J [ND(0.00010
Aroclor-1260	Not Listed	Not Listed	D(0.00010) J [ND(0.00010
Total PCBs	0.0003	0.005	D(0.00010) J [ND(0.00010

Notes:

- 1. Samples were collected by ARCADIS BBL, and submitted to SGS Environmental Services, Inc. for analysis of PCBs (filtered).
- 2. Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP), General Electric Company, Pittsfield, Massachusetts, ARCADIS BBL (approved March 15, 2007 and resubmitted March 30, 2007).
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- Field duplicate sample results are presented in brackets.

Data Qualifiers:

J - Indicates that the associated numerical value is an estimated concentration.

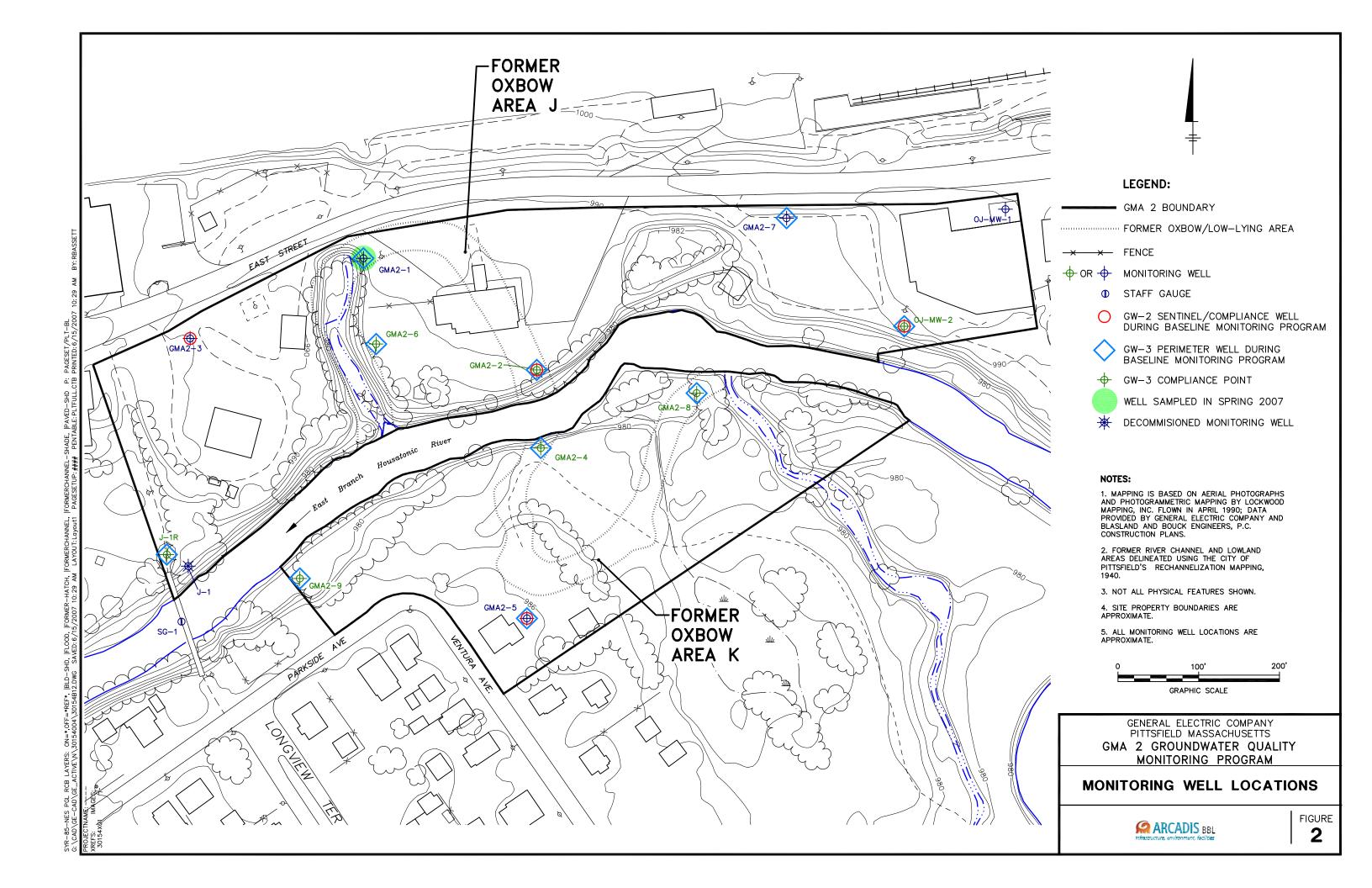
Table 5
Proposed Long Term Groundwater Quality Monitoring Program

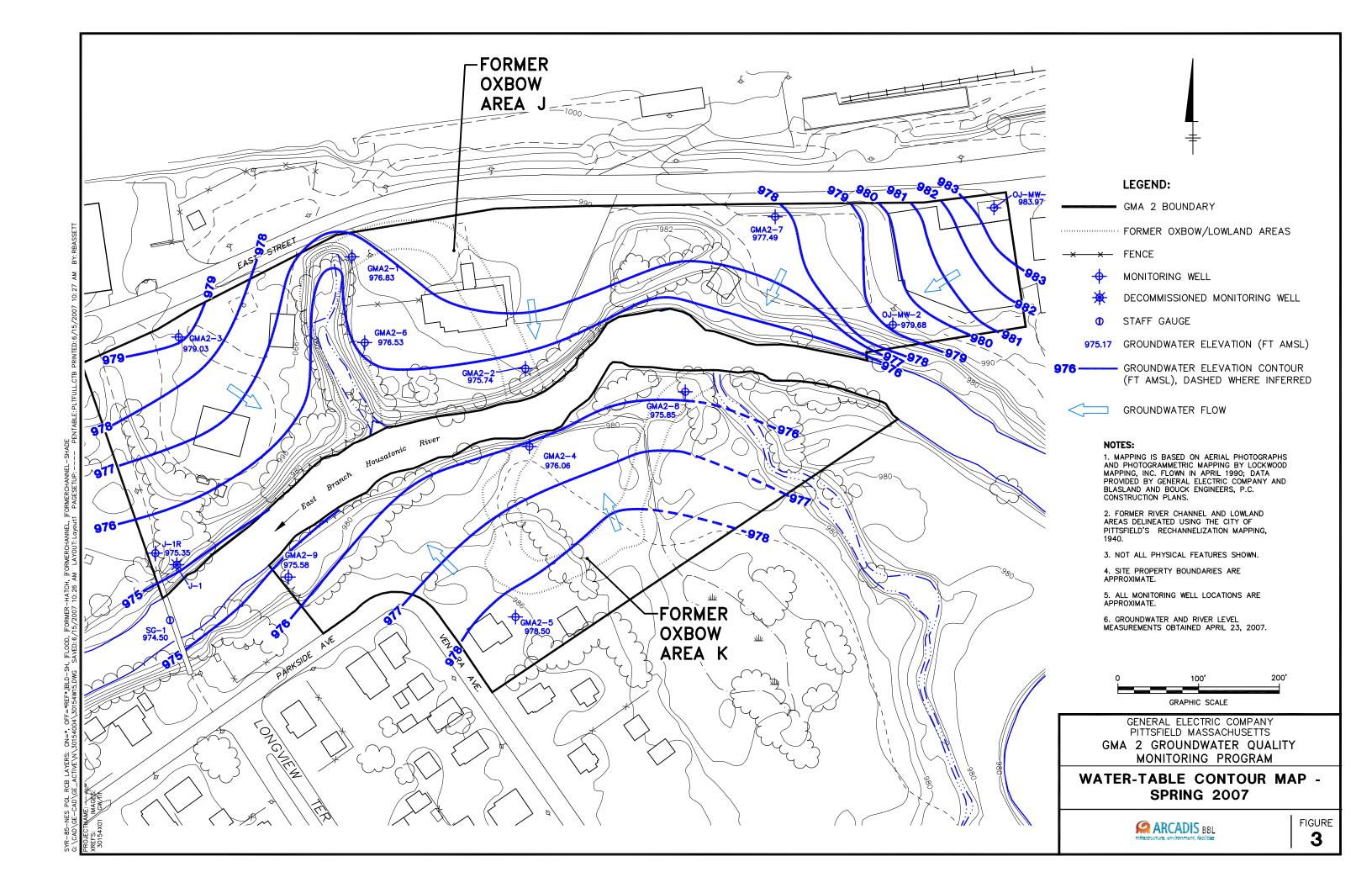
Baseline Assessment Final Report and Long Term Monitoring Program Proposal Groundwater Management Area 2 General Electric Company - Pittsfield, Massachusetts

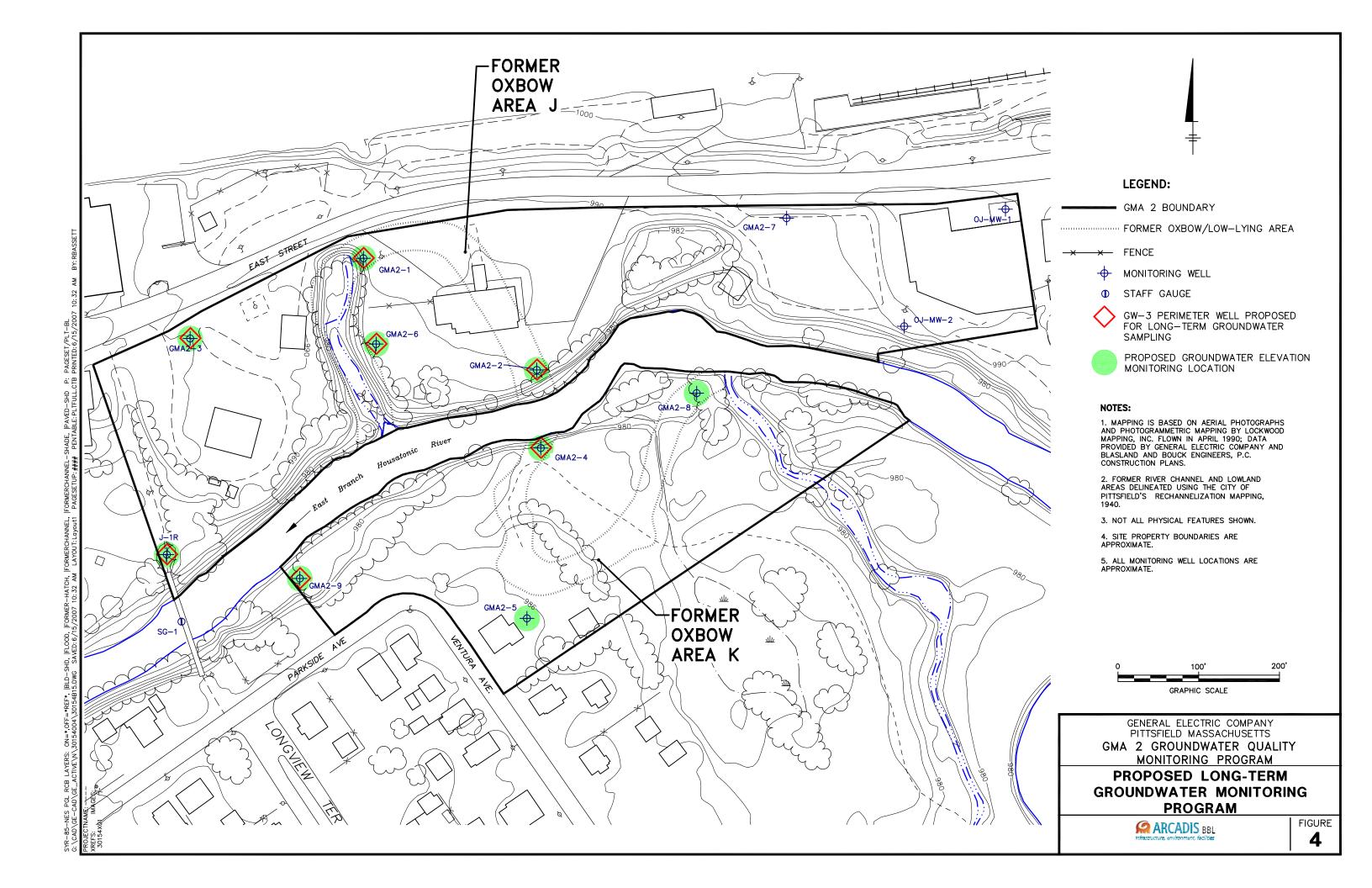
Well Number	Monitoring Well Usage	Proposed Sampling	Schedule & Analyses	Comments
well Number	Monitoring Well Osage	Sampling Schedule	Proposed Analyses	Comments
GMA2-1	GW-3 Perimeter (Upgradient)	Semi-Annual	PCB	Long-term sampling proposed to verify attainment of GW-3 Performance Standards for PCBs.
GMA2-2	GW-3 Perimeter (Compliance Point)	Semi-Annual	РСВ	Long-term sampling proposed to verify attainment of GW-3 Performance Standards for PCBs downgradient of well GMA2-1.
GMA2-3	GW-2 Sentinel / GW-3 Perimeter (Upgradient)	Semi-Annual	РСВ	Long-term sampling proposed to verify attainment of GW-3 Performance Standards for PCBs.
GMA2-4	GW-3 Perimeter (Compliance Point)	Semi-Annual	PCB	Long-term sampling proposed to verify attainment of GW-3 Performance Standards for PCBs.
GMA2-6	GW-3 Perimeter (Compliance Point)	Semi-Annual	PCB	Long-term sampling proposed to verify attainment of GW-3 Performance Standards for PCBs downgradient of well GMA2-1.
GMA2-9	GW-3 Perimeter (Compliance Point)	Semi-Annual	РСВ	Long-term sampling proposed to verify attainment of GW-3 Performance Standards for PCBs.
J-1R	GW-3 Perimeter (Compliance Point)	Semi-Annual	PCB	Long-term sampling proposed to verify attainment of GW-3 Performance Standards for PCBs downgradient of well GMA2-3.

Notes:

- 1. The wells proposed for long-term groundwater quality sampling will be sampled for the listed parameters during the spring and fall seasons, generally during the months of April and October. The next scheduled sampling round is proposed to be conducted in fall 2007.
- 2. All analyses for PCBs conducted under the long-term monitoring program will utilize filtered samples only.
- 3. Groundwater elevation data is also proposed to be collected on a semi-annual basis from each of the monitoring wells listed above, along with wells GMA2-5 and GMA2-8 and the Housatonic River staff gauge.




Figures



FIGURE

ARCADIS BBL

ARCADIS BBL

Appendices

ARCADIS BBL

Appendix A

Field Sampling Data

Table A-1 Summary of Groundwater Sampling Methods

Baseline Assessment Final Report And Long Term Monitoring Program Proposal Groundwater Managment Area 2

General Electric Company - Pittsfield, Massachusetts

				Sam	pling Me	thod				
Well ID	Spring 2002	Fall 2002	Spring 2003	Fall 2003	Spring 2004	Fall 2005	Spring 2006	Fall 2006	Spring 2007	Comments
GMA2-1	ВР	PP	PP	ВР	BP	BP	BP	BP	ВР	Spring 2007: Field parameters stabilized, but affected by extreme cold temperatures on the date of sampling (wind chill of negative 15 to 20 degrees Fahrenheit). Fall 2002: Flow-through turbidity meter malfunction; Hach meter used to measure turbidity.
GMA2-2	PP/BA	PP	BP	BP	NS	NS	NS	NS	NS	Fall 2002: Flow-through turbidity meter malfunction; Hach meter used to measure turbidity. Spring 2002: VOCs collected with a disposable teflon bailer.
GMA2-3	PP/BA	PP	PP	PP	NS	NS	NS	NS	NS	Spring 2002: VOCs collected with a disposable teflon bailer.
GMA2-4	PP	PP	PP	PP	BP	ВР	BP	NS	NS	Spring 2006: 4/11/2006 sample mishandled by laboratory. Well re-sampled on 4/19/2006. Fall 2002: Dissolved oxygen meter malfunction. Spring 2002: Dissolved oxygen meter malfunction.
GMA2-5	PP/BA	PP	PP	PP	NS	NS	NS	NS		Fall 2002: Dissolved oxygen meter malfunction. Spring 2002: VOCs collected with a disposable teflon bailer.
GMA2-6	PP	PP	PP	PP	NS	NS	NS	NS	NS	Spring 2002: Dissolved oxygen meter malfunction.
GMA2-7	PP	PP	NS	PP	PP	NS	NS	NS	NS	Spring 2003: Access to well was denied by property owner.
GMA2-8	PP	PP	PP	PP	NS	NS	NS	NS	NS	Fall 2002: Dissolved oxygen meter malfunction.
GMA2-9	ВР	PP	PP	PP	BP	ВР	BP	NS	NS	Spring 2002: Flow-through turbidity meter malfunction; Hach meter used to measure turbidity.
J-1R	BP	PP	PP	PP	NS	NS	NS	NS	_	Fall 2002: Dissolved oxygen meter malfunction. Spring 2002: Dissolved oxygen meter malfunction; Hach meter used to measure turbidity.
OJ-MW-2	PP/BA	PP	NS	PP	PP	NS	NS	NS	NS	Spring 2003: Access to well was denied by property owner. Fall 2002: Well went dry during sampling. Several visits required to collect full sample volume. Spring 2002: VOCs collected with a disposable teflon bailer.

Notes:

BP - Bladder Pump.

PP - Peristaltic Pump.

PP/BA - Peristaltic Pump with Bailer used for VOC sample collection.

NS - Not Sampled.

GROUNDWATER SAMPLING LOG

Key N		12-1		••	Site/GMA Name	GE P.	itsfill -	GMA-7	
				San	pling Personne	1 GAR		<u> </u>	
	ackground (ppn			· 	Date	3/8/0	7		***************************************
Well H	ieadapace (ppn	1) _0		· ·	Weathe			500W, 50 A	= Windy
WELL INFO		_					Sample Time	13:35	,
	rce Point Marke			_	•			GMAZ-1	
Height o	of Reference Poi		Meas. From	" <u>Groun</u>	<u>. J</u>			GMAZ-D	UP-1
α.	Weil Diamet		_,					Collected	
		th /3.8 -23		n <u>Ground</u>	-		Split Sample ID	******	
Ψ'	Vater Table Dep Well Dep		Meas. From	TIC					
Length	of Water Colum		Weas, Fig.	"		Required		Parameters:	Callected
	e of Water in We	1.89 as	llons			()		(Std. ist)	()
Intake Depti	h of Pump/Tubin		Meas, From	n サル		()		(Exp. list) VOCs	()
						()		s (Total)	()
	int Identification					ixi		(Dissolved)	(7)
	nner (PVC) Casi					()		rganics (Total)	()
	Outer (Protective	e) Casing				()	Metals/Inorga	inics (Dissolved)	()
stade/BG2;*	Ground Surface					()	EPA Cyan	de (Dissolved)	()
Redevelop?	Y (N)					()	· · · · · · · · · · · · · · · · · · ·	de (Dissolved)	()
	. (9	•				()		s/PCDFs	()
						()		s/Herbicides	()
						()		Attenuation	()
VACUATION	NINFORMATIO	· I				()	Cales	(Specify)	()
F	Pump Start Time	12:30							
	Pump Stop Time		<u></u>		Evacuation Me	ethod; Ba ile r () Bladder i	ump 🔎)	
	utes of Pumping		-		Peristattic Purr		ibmersible Pump (ecify ()
		3.3gall	دمو		Pump Type:	Marsel	ralk - sy	stem 1	, ,
LI .	Ind Well Go Dry?	Y (D)			Samples collec	cted by same me	ethod as evacuatio	n? (Y) N (speci	fy)
	Matar Ounith	Weter Type(s) / S	÷	V-1					
	Treater Guanty :	nousi Type(S) / S	enai Numbers:	11 ach	2100 P				
	Pump	Total	Water	Temp.	pH	Turbie	imeter		
Time	Rate	Gallons	Level	(Colsius)		Sp. Cond.	Turbidity	DO	0.77
	(L/min.)					(mS/cm)	(NETLIN	/mm/l)	ORP
	(Friedrich)	Removed	(ft TIC)	[3%]*	[0.1 units]*	(mS/cm) [3%]*	(NTU) [10% or 1 NTU]*	(mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
2:35	125m1	Removed	(ft TIC) 15.97	[3%]*	[0.1 units]*	1			(mV)
					[0.1 units]*	1	[10% or 1 NTU]*	[10% or 0.1 mg/]*	(mV) [10 mV]*
2:40 2:45	125m1	0.17	15.97		###DEPORTS	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/l]*	(mV) [10 mV]*
2:40 2:45	125ml	0.17	15.97	0.21	_ 5.30	[3%]* 	10% or 1 NTU 2 4 8 7	[10% or 0.1 mg/f]* /300 6.96	(mV) [10 mV]* 151-0
2:40 2:45 2:50	125ml 125ml 125ml 125ml	0.17 0.33 0.50	15.97 16.00 16.02	0.21	5.30 5.58	11-62 11-58	[10% or 1 NTU]* 2 4 8 7	13.00 6.96 4.46	(mV) [10 mV]* /51.0 /4/.3 /22.2
2:40 2:45 2:50 2:55	125ml 125ml 125ml 125ml	0.17 0.33 0.50 0.66	15.97 16.00 16.02 15.98	0.21	5.30 5.58 6.03	11-62 11-58 11-61	10% or 1 NTU 2 4 8 7 5 5	1300 6.96 4.46 4.26	(mV) [10 mV]* 151.0 141.3 122.2 120.7
2:40 12:50 12:55 12:55 13:00	125ml 125ml 125ml 125ml 125ml	0.17 0.33 0.50 0.66 0.83	15.97 16.00 16.02 15.98 15.98	0.21 0.16 0.07 0.16	5.30 5.58 6.03 6.08	11-62 11-58 11-61 11-62	10% or 1 NTUP 2 4 8 7 5 4	1300 6.96 4.46 4.26	(mV) [10 mV]* /51.0 /4/.3 /22.2
2:40 12:45 12:50 12:55 12:55 13:00	125m1 125m1 125m1 125m1 125m1 125m1 125m1 125m1	0.17 0.33 0.50 0.66 0.83 0.99 1.16	15.97 16.00 16.02 15.98 15.98 15.98 16.00 15.96	0.21 0.16 0.07 0.16 0.05 0.03 0.09	5.30 5.58 6.03 6.08 6.19 6.29 6.36	11-62 11-62 11-61 11-62 11-71 11-76	10% or 1 NTUF 2 4	[10% or 0.1 mg/f] /300 6.96 4.46 4.26 3.71 3.48 3.31	(mV) [10 mV]* /51.0 /4/.3 /22.2 /20.7 /16.6
2:40 12:45 12:50 12:55 13:00 13:10 The stabilization	25m 25m 25m 25m 25m 25m 25m	0.17 0.33 0.50 0.66 0.83 0.99 1.16 1.32 ch field paramet	15.97 16.00 16.02 15.98 15.98 15.98 16.00 15.96 er (three conserved)	0.21 0.16 0.07 0.16 0.05 0.03 0.09	5.30 5.58 6.03 6.08 6.19 6.29 6.36	11-62 11-62 11-61 11-62 11-71 11-76	10% or 1 NTUF 2 4	[10% or 0.1 mg/f] /300 6.96 4.46 4.26 3.71 3.48 3.31	(mV) [10 mV]* 151.0 141.3 122.2 120.7 116.6 111.2
2:40 12:45 12:50 12:55 13:00 13:10 The stabilization	125m 125m	0.17 0.33 0.50 0.66 0.83 0.99 1.16 1-32 ch field paramet	15.97 16.00 16.02 15.98 15.98 16.00 15.96 er (three consecutions	0. 21 0.16 0.07 0.16 0.05 0.03 0.09	5.30 5.58 6.03 6.08 6.19 6.29 6.36 collected at 3- to		[10% or 1 NTU] 2 4 8 7 5 4 3 4 4 4 4 4 4 5) is listed in each	[10% or 0.1 mg/f]*	(mV) [10 mV]* 151.0 141.3 122.2 120.7 116.6 111.2
2:40 2:50 2:55 3:00 3:05 3:10 The stabilization	125ml	0.17 0.33 0.50 0.66 0.83 0.99 1.16 1.32 ch field paramet	15.97 16.00 16.02 15.98 15.98 15.98 16.00 15.96 er (three consections	0. 21 0.16 0.07 0.16 0.05 0.03 0.09 utive readings	5.30 5.58 6.03 6.08 6.19 6.29 6.36 collected at 3- to		[10% or 1 NTU] 2 4 8 7 5 4 3 4 4 4 4 4 4 5) is listed in each	[10% or 0.1 mg/f]*	(mV) [10 mV]* 151.0 141.3 122.2 120.7 116.6 111.2
2:40 2:50 2:50 3:00 3:05	125ml	0.17 0.33 0.50 0.66 0.83 0.99 1.16 1.32 ch field paramet	15.97 16.00 16.02 15.98 15.98 15.98 16.00 15.96 er (three consections	0. 21 0.16 0.07 0.16 0.05 0.03 0.09 utive readings	5.30 5.58 6.03 6.08 6.19 6.29 6.36 collected at 3- to		10% or 1 NTUF 2 4	[10% or 0.1 mg/f]*	(mV) [10 mV]* 151.0 141.3 122.2 120.7 116.6 111.2
2:40 2:50 2:55 3:00 3:05 3:10 The stabilization BSERVATION	125ml 00 criteria for ea	0.17 0.33 0.50 0.66 0.83 0.99 1.16 1.32 ch field parameter HOD DEVIN	15.97 16.00 16.02 15.98 15.98 16.00 15.96 er (three consections THE CONSECTIONS	0.21 0.16 0.07 0.16 0.05 0.03 0.03 0.09 cutive readings	5.30 5.58 6.03 6.08 6.19 6.29 6.36 collected at 3- to	11.62 11.62 11.62 11.62 11.71 11.76 11.76 11.83 5-minute interva	[10% or 1 NTU] 2 4 8 7 5 4 3 4 4 4 4 4 4 4 4	[10% or 0.1 mg/f] ————————————————————————————————————	(mV) [10 mV]* 151.0 141.3 122.2 120.7 116.6 111.2 107.0
2:40 2:50 2:50 2:55 3:00 3:05 (3:10) The stabilization BSERVATION [7:1-1]	125ml	0.17 0.33 0.50 0.66 0.83 0.99 1.16 1.32 ch field parameter HOD DEVIN	15.97 16.00 16.02 15.98 15.98 16.00 15.96 er (three consections THE CONSECTIONS	0.21 0.16 0.07 0.16 0.05 0.03 0.03 0.09 cutive readings	5.30 5.58 6.03 6.08 6.19 6.29 6.36 collected at 3- to	11.62 11.62 11.62 11.62 11.71 11.76 11.76 11.83 5-minute interva	[10% or 1 NTU] 2 4 8 7 5 4 3 4 4 4 4 4 4 4 4	[10% or 0.1 mg/f]*	(mV) [10 mV]* 151.0 141.3 122.2 120.7 116.6 111.2 107.0
2:40 2:50 2:50 2:55 3:00 3:05 3:10 The stabilization 3:50 3:10 The stabilization 3:50 3:10 The stabilization	125ml 00 criteria for ea	0.17 0.33 0.50 0.66 0.83 0.99 1.16 1.32 ch field parameter HOD DEVIN	15.97 16.00 16.02 15.98 15.98 16.00 15.96 er (three consections THE CONSECTIONS	0.21 0.16 0.07 0.16 0.05 0.03 0.03 0.09 cutive readings	5.30 5.58 6.03 6.08 6.19 6.29 6.36 collected at 3- to	11.62 11.62 11.62 11.62 11.71 11.76 11.76 11.83 5-minute interva	[10% or 1 NTU] 2 4 8 7 5 4 3 4 4 4 4 4 4 4 4	[10% or 0.1 mg/f] ————————————————————————————————————	(mV) [10 mV]* 151.0 141.3 122.2 120.7 116.6 111.2 107.0
2:40 2:45 2:50 2:55 3:00 3:05 3:10 he stabilization SERVATION	125ml 565	0.17 0.33 0.50 0.66 0.83 0.99 1.16 1.32 ch field parameter HOD DEVIN	15.97 16.00 16.02 15.98 15.98 16.00 15.96 er (three consections THE CONSECTIONS	0.21 0.16 0.07 0.16 0.05 0.03 0.03 0.09 cutive readings	5.30 5.58 6.03 6.08 6.19 6.29 6.36 collected at 3- to	11.62 11.62 11.62 11.62 11.71 11.76 11.76 11.83 5-minute interva	[10% or 1 NTU] 2 4 8 7 5 4 3 4 4 4 4 4 4 4 4	[10% or 0.1 mg/f] ————————————————————————————————————	(mV) [10 mV]* 151.0 141.3 122.2 120.7 116.6 111.2 107.0
2:40 2:45 2:50 2:55 3:00 3:05 3:10 he stabilization 3SERVATION 5111 Alots MAPLE DEST Laboratory: efivered Via:	125m 25m 25m 25m 25m 5m 5m 6m 6m 7m 7m 5m 5m 7m 7m 5m 7m 5m 7m 5m 7m 7m 5m 7m 7m 7m 5m 7m 7m 5m 7m 7m 7m 5m 7m 7m 7m 5m 7m 7m	0.17 0.33 0.50 0.66 0.83 0.99 1.16 1.32 ch field parameter HOD DEVIN	15.97 16.00 16.02 15.98 15.98 16.00 15.96 er (three consections THE CONSECTIONS	0.21 0.16 0.07 0.16 0.05 0.03 0.03 0.09 cutive readings	5.30 5.58 6.03 6.08 6.19 6.29 6.36 collected at 3- to	11.62 11.62 11.62 11.62 11.71 11.76 11.76 11.83 5-minute interva	[10% or 1 NTU] 2 4 8 7 5 4 3 4 4 4 4 4 4 4 4	[10% or 0.1 mg/f] ————————————————————————————————————	(mV) [10 mV]* 151.0 141.3 122.2 120.7 116.6 111.2 107.0
2:40 2:50 2:50 3:00 3:05 3:10 The stabilization BSERVATION Co. + 1	125m 25m 25m 25m 25m 5m 5m 6m 6m 7m 7m 5m 5m 7m 7m 5m 7m 5m 7m 5m 7m 7m 5m 7m 7m 7m 5m 7m 7m 5m 7m 7m 7m 5m 7m 7m 7m 5m 7m 7m	0.17 0.33 0.50 0.66 0.83 0.99 1.16 1.32 ch field parameter HOD DEVIN	15.97 16.00 16.02 15.98 15.98 16.00 15.96 er (three consections THE CONSECTIONS	0.21 0.16 0.07 0.16 0.05 0.03 0.09 utive readings seme	5.30 5.58 6.03 6.08 6.19 6.29 6.36 collected at 3- to	11-62 11-62 11-61 11-62 11-71 11-76 11-83 5-minute interval	[10% or 1 NTU] 2 4 8 7 5 4 3 4 4 4 4 4 4 4 4	[10% or 0.1 mg/f] ————————————————————————————————————	(mV) [10 mV]* 151.0 141.3 122.2 120.7 116.6 111.2 107.0

GROUNDWATER SAMPLING LOG

Well No. GMAZ-1	Site/GMA Name	GEPiHSfield-GMA-Z
	Sampling Personnel	GAR
; ·	Date	3/8/07
	Weather	Overcast, light snow 50F. Winds

WELL	INFORMATION - See Page 1	ĺ
------	--------------------------	---

Time	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft TIC)	Temp. (Celsius) [3%]*	pH [0.1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
13.05	125ml	1-49	15.96		6.41	11.80	2	3.18	101.5
13:20	125m)	1.65		0.10	6.48	11.85	2	3.14	99.5
	125ml		15.98	0.08	6.54	11.91	Z	3.12	97.4
13:30	125ml	1.98	15.98	0.12	6.56	11.85	2	3-10	96-0
									ţ
							*		
				1	į.				
·									
					-	-			
	····								
									·
									ſ
			~~~						
									-
									· · · · · · · · · · · · · · · · · · ·
							7.012		
						<del></del>		-	,

* The stabilization criteria for each field parameter (three consecutive readings collected at 3- to 5-minute intervals) is listed in each column heading.
OBSERVATIONS/SAMPLING METHOD DEVIATIONS

# **ARCADIS** BBL

# Appendix B

Historical Groundwater Data



#### **Historical Groundwater Data**

Summary of Historical Groundwater Analytical Results

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-1 04/15/02	GMA2-1 10/16/02	GMA2-1 4/24-4/25/03	GMA2-1 10/27/03	GMA2-1 05/21/04	GMA2-1 11/03/05
Volatile Organic	s						
1,1,1,2-Tetrachlo	roethane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA
1,1,1-Trichloroeth	nane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA
1,1,2,2-Tetrachlo	roethane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA
1,1,2-Trichloroeth	nane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA
1,1-Dichloroethar	ne	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA
1,1-Dichloroether		ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	NA
1,2,3-Trichloropro	opane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA
1,2-Dibromo-3-ch	loropropane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA
1,2-Dibromoethar	ne	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	NA
1,2-Dichloroethar	ne	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA
1,2-Dichloropropa	ane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA
1,4-Dioxane		ND(0.20)	ND(0.200) J	ND(0.20)	ND(0.20) J	NA	NA
2-Butanone		ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010) J	NA	NA
2-Chloro-1,3-buta	adiene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA
2-Chloroethylviny	ether /	ND(0.0050)	ND(0.0050)	ND(0.0050) J	ND(0.0050)	NA	NA
2-Hexanone		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
3-Chloropropene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA
4-Methyl-2-pentar	none	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Acetone		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Acetonitrile		ND(0.10)	ND(0.100) J	ND(0.10) J	ND(0.10) J	NA	NA
Acrolein		ND(0.10)	ND(0.100) J	ND(0.10) J	ND(0.10)	NA	NA
Acrylonitrile		ND(0.0050)	ND(0.0050) J	ND(0.0050)	ND(0.0050)	NA	NA
Benzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA
Bromodichlorome	ethane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA
Bromoform		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) J	NA	NA
Bromomethane		ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)	NA.	NA
Carbon Disulfide		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA.	NA
Carbon Tetrachlo	ride	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA.	NA
Chlorobenzene	71140	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA
Chloroethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA.	NA
Chloroform		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA
Chloromethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA
cis-1,3-Dichloropi	ronene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA
Dibromochlorome		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA
Dibromomethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) J	NA NA	NA NA
Dichlorodifluorom		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA
Ethyl Methacrylat		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA
Ethylbenzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA
Iodomethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA
Isobutanol		ND(0.10)	ND(0.10)	ND(0.10) J	ND(0.10) J	NA.	NA NA
Methacrylonitrile		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA
Methyl Methacryla	ate	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA
Methylene Chloric		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA
Propionitrile	ac	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	NA NA	NA NA
Styrene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA
Tetrachloroethen	۵	ND(0.0030)	ND(0.0020)	0.0022	ND(0.0020) J	NA NA	NA
Toluene		ND(0.0020)	ND(0.0050)	ND(0.0050)	0.0013 J	NA NA	NA NA
trans-1,2-Dichlord	nethene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA
trans-1,3-Dichlord		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA
trans-1,4-Dichlord		ND(0.0050)	ND(0.0050)	ND(0.0050) J	ND(0.0050)	NA NA	NA NA
Trichloroethene	J-Z-DUICHE	ND(0.0050)	ND(0.0050)	0.062	0.011	NA NA	NA NA
Trichlorofluorome	othana	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA
	ulalic	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	
Vinyl Acetate		\ /	` ,		( )		NA NA
Vinyl Chloride		ND(0.0020) ND(0.010)	ND(0.0020)	ND(0.0020) ND(0.010)	ND(0.0020)	NA NA	NA NA
Xylenes (total) Total VOCs		, ,	ND(0.010)		ND(0.010)		NA NA
TOTAL VOUS		ND(0.20)	ND(0.20)	0.064	0.012 J	NA	NA

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-1 04/15/02	GMA2-1 10/16/02	GMA2-1 4/24-4/25/03	GMA2-1 10/27/03	GMA2-1 05/21/04	GMA2-1 11/03/05
PCBs-Unfiltered			•		•	•	•
Aroclor-1016		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	NA	NA
Aroclor-1221		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	NA	NA
Aroclor-1232		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	NA	NA
Aroclor-1242		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	NA	NA
Aroclor-1248		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	NA	NA
Aroclor-1254		0.00019	0.00014	0.00094	0.00016	NA	NA
Aroclor-1260		ND(0.000065)	ND(0.000065)	0.00022	ND(0.000065)	NA	NA
Total PCBs		0.00019	0.00014	0.00116	0.00016	NA	NA
PCBs-Filtered							
Aroclor-1016		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)		ND(0.000065)
Aroclor-1221		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1232		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)		ND(0.000065)
Aroclor-1242		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1248		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1254		0.000072	ND(0.000065)	0.00050	0.00013	0.000071	0.00032
Aroclor-1260		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Total PCBs		0.000072	ND(0.000065)	0.00050	0.00013	0.000071	0.00032
Semivolatile Orga	nics				•	•	
1,2,4,5-Tetrachlor		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
1,2,4-Trichloroben		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
1.2-Dichlorobenze		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
1,2-Diphenylhydra	zine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
1,3,5-Trinitrobenze		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
1.3-Dichlorobenze		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
1,3-Dinitrobenzene	1	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
1,4-Dichlorobenze		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
1,4-Naphthoquinor		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
1-Naphthylamine		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
2,3,4,6-Tetrachlor	phenol	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
2,4,5-Trichlorophe		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
2,4,6-Trichlorophe		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
2,4-Dichloropheno		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
2,4-Dimethylpheno		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
2,4-Dinitrophenol		ND(0.050)	ND(0.050)	ND(0.050) J	ND(0.050)	NA	NA
2,4-Dinitrotoluene		ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	NA	NA
2,6-Dichloropheno		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
2,6-Dinitrotoluene		ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	NA	NA
2-Acetylaminofluoi	ene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
2-Chloronaphthale		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
2-Chlorophenol		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
2-Methylnaphthale	ne	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
2-Methylphenol	-	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
2-Naphthylamine		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
2-Nitroaniline		ND(0.050)	ND(0.050)	ND(0.050) J	ND(0.050)	NA	NA
2-Nitrophenol		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
2-Picoline		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
3&4-Methylphenol		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
3,3'-Dichlorobenzio	dine	ND(0.020)	ND(0.020)	ND(0.020) J	ND(0.020)	NA	NA
3,3'-Dimethylbenzi	dine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
3-Methylcholanthre		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
3-Nitroaniline		ND(0.050)	ND(0.050)	ND(0.050) J	ND(0.050)	NA	NA
4,6-Dinitro-2-meth	ylphenol	ND(0.050)	ND(0.050)	ND(0.050) J	ND(0.050)	NA	NA
4-Aminobiphenyl	-	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
4-Bromophenyl-ph	enylether	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
4-Chloro-3-Methyl		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
4-Chloroaniline		ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	NA	NA
4-Chlorobenzilate		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
4-Chlorophenyl-ph	enylether	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
4-Nitroaniline	•	ND(0.050)	ND(0.050)	ND(0.050) J	ND(0.050)	NA	NA
4-Nitrophenol		ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	NA	NA
T-INITIOPHICHOI				115(0.000)	110(0.000)		1 47 1

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Sample ID: Parameter Date Collected:	GMA2-1 04/15/02	GMA2-1 10/16/02	GMA2-1 4/24-4/25/03	GMA2-1 10/27/03	GMA2-1 05/21/04	GMA2-1 11/03/05
4-Nitroquinoline-1-oxide	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010) J	NA	NA
4-Phenylenediamine	ND(0.010)	ND(0.0100) J	ND(0.010)	ND(0.010)	NA	NA
5-Nitro-o-toluidine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
7,12-Dimethylbenz(a)anthracene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
a,a'-Dimethylphenethylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Acenaphthene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Acenaphthylene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Acetophenone	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Aniline	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Anthracene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Aramite	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	NA	NA
Benzidine	ND(0.020)	ND(0.0200) J	ND(0.020)	ND(0.020) J	NA	NA
Benzo(a)anthracene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Benzo(a)pyrene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Benzo(b)fluoranthene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Benzo(g,h,i)perylene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Benzo(k)fluoranthene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Benzyl Alcohol	ND(0.020)	ND(0.020)	ND(0.020) J	ND(0.020)	NA	NA
bis(2-Chloroethoxy)methane	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
bis(2-Chloroethyl)ether	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
bis(2-Chloroisopropyl)ether	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
bis(2-Ethylhexyl)phthalate	ND(0.0060)	ND(0.0060)	ND(0.0060) J	ND(0.0060)	NA	NA
Butylbenzylphthalate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Chrysene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Diallate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Dibenzo(a,h)anthracene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Dibenzofuran	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Diethylphthalate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Dimethylphthalate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Di-n-Butylphthalate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Di-n-Octylphthalate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Diphenylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Ethyl Methanesulfonate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Fluoranthene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Fluorene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Hexachlorobenzene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA
Hexachlorobutadiene	ND(0.0010) ND(0.010)	ND(0.0010) J ND(0.010)	ND(0.0010) ND(0.010)	ND(0.0010) ND(0.010)	NA NA	NA NA
Hexachlorocyclopentadiene Hexachloroethane	, ,	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA
Hexachlorophene	ND(0.010) ND(0.020)	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA
Hexachloropropene	ND(0.020)	ND(0.0200) 3	ND(0.020)	ND(0.020) J	NA NA	NA NA
Indeno(1,2,3-cd)pyrene	ND(0.010)	ND(0.010)	ND(0.010) 3	ND(0.010) 3	NA NA	NA NA
Isodrin	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA
Isophorone	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA
Isosafrole	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA
Methapyrilene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA
Methyl Methanesulfonate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Naphthalene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA
Nitrobenzene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA
N-Nitrosodiethylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA
N-Nitrosodimethylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA
N-Nitroso-di-n-butylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA
N-Nitroso-di-n-propylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA
N-Nitrosodiphenylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
N-Nitrosomethylethylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
N-Nitrosomorpholine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
N-Nitrosopiperidine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
N-Nitrosopyrrolidine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
o,o,o-Triethylphosphorothioate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
o-Toluidine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Semivolatile Organics (continued)	·/	(/	\/	(/		
p-Dimethylaminoazobenzene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
1	(3.0.0)	(3.0.0)	= (5.0.0)	(3.0.0)	1	

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:		GMA2-1 10/16/02	GMA2-1 4/24-4/25/03	GMA2-1 10/27/03	GMA2-1 05/21/04	GMA2-1 11/03/05
Pentachlorobenz	ene	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	NA	NA
Pentachloroetha	ne	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Pentachloronitrol	benzene	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	NA	NA
Pentachloropher	nol	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	NA	NA
Phenacetin		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Phenanthrene		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Phenol		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Pronamide		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Pyrene		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Pyridine		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Safrole		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Thionazin		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA
Organochlorine	Pesticides						
4,4'-DDD		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	NA	NA
4,4'-DDE		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	NA	NA
4,4'-DDT		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	NA	NA
Aldrin		ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	NA	NA
Alpha-BHC		ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	NA	NA
Alpha-Chlordane	)	ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	NA	NA
Beta-BHC		ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	NA	NA
Delta-BHC		ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	NA	NA
Dieldrin		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	NA	NA
Endosulfan I		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	NA	NA
Endosulfan II		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	NA	NA
Endosulfan Sulfa	ate	ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	NA	NA
Endrin		ND(0.00010)	0.0000042 J	ND(0.00010)	NA	NA	NA
Endrin Aldehyde		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	NA	NA
Endrin Ketone		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	NA	NA
Gamma-BHC (Li	,	ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	NA	NA
Gamma-Chlorda	ne	ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	NA	NA
Heptachlor		ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	NA	NA
Heptachlor Epox	ide	ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	NA	NA
Kepone		ND(0.050)	ND(0.050)	ND(0.050)	NA	NA	NA
Methoxychlor		ND(0.00050)	ND(0.00050)	ND(0.00050)	NA	NA	NA
Technical Chlord	lane	ND(0.00050)	ND(0.00050)	ND(0.00050)	NA	NA	NA
Toxaphene		ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	NA	NA
Organophospha	ate Pesticides						
Dimethoate		ND(0.050)	ND(0.050)	ND(0.050)	NA	NA	NA
Disulfoton		ND(0.010)	ND(0.010)	ND(0.040)	NA	NA	NA
Ethyl Parathion		ND(0.010)	ND(0.010)	ND(0.040)	NA	NA	NA
Famphur		ND(0.050)	ND(0.050)	ND(0.050)	NA	NA	NA
Methyl Parathion	1	ND(0.010)	ND(0.010)	ND(0.040)	NA	NA	NA
Phorate		ND(0.010)	ND(0.010)	ND(0.040)	NA	NA	NA
Sulfotep		ND(0.010)	ND(0.010)	ND(0.040)	NA	NA	NA
None Detected					NA	NA	NA
Herbicides							
2,4,5-T		ND(0.0020)	ND(0.0020)	ND(0.0020)	NA	NA	NA
2,4,5-TP		ND(0.0020)	ND(0.0020)	ND(0.0020)	NA	NA	NA
2,4-D		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Dinoseb		ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	NA	NA
None Detected					NA	NA	NA
Furans		•	•		•		
2,3,7,8-TCDF		0.0000000055 J	ND(0.0000000031	ND(0.0000000047	ND(0.000000031)	NA	NA
TCDFs (total)		ND(0.000000012) X			ND(0.0000000031)		NA
1,2,3,7,8-PeCDF		ND(0.0000000037) >			` '	NA	NA
2,3,4,7,8-PeCDF		· '			ND(0.00000000038)	NA	NA
PeCDFs (total)		ND(0.000000020) X			ND(0.0000000035)	NA	NA
1,2,3,4,7,8-HxCE	OF .	` '			ND(0.000000020) X		NA
1,2,3,6,7,8-HxCE			ND(0.00000000025	. ,	ND(0.0000000031)	NA NA	NA
1,2,3,7,8,9-HxCE					ND(0.0000000001)	NA NA	NA
2,3,4,6,7,8-HxCE		ND(0.0000000012)			ND(0.0000000035)	NA	NA
HxCDFs (total)		0.000000035	ND(0.0000000025	0.0000000032	ND(0.0000000033)	NA NA	NA
o (ioiai)		0.00000000		0.00000002	1 2 (0.00000001)	. 47 1	. 4/ 1

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:		GMA2-1 10/16/02	GMA2-1 4/24-4/25/03	GMA2-1 10/27/03	GMA2-1 05/21/04	GMA2-1 11/03/05
1,2,3,4,6,7,8-HpCD	F	ND(0.0000000065) >	ND(0.00000000025	0.0000000085 J	ND(0.0000000030)	NA	NA
1,2,3,4,7,8,9-HpCD					ND(0.000000038)	NA	NA
HpCDFs (total)		0.0000000090	ND(0.0000000025	0.0000000085	ND(0.0000000030)	NA	NA
OCDF		ND(0.0000000094) >	ND(0.0000000049	0.00000014 J	ND(0.0000000063)	NA	NA
Dioxins		,			,		
2,3,7,8-TCDD		ND(0.0000000015)	ND(0.0000000017	ND(0.0000000030	ND(0.0000000043)	NA	NA
TCDDs (total)		ND(0.0000000015)	ND(0.0000000051	ND(0.0000000030	ND(0.0000000043)	NA	NA
1,2,3,7,8-PeCDD		ND(0.0000000030) >	ND(0.0000000025	ND(0.0000000036	ND(0.0000000045)	NA	NA
PeCDDs (total)		ND(0.0000000030) >	ND(0.0000000034	ND(0.0000000036	ND(0.0000000045)	NA	NA
1,2,3,4,7,8-HxCDD		ND(0.0000000018)	ND(0.0000000053	ND(0.0000000047	ND(0.0000000060)	NA	NA
1,2,3,6,7,8-HxCDD		ND(0.0000000018)	ND(0.0000000047	ND(0.0000000042	ND(0.0000000054)	NA	NA
1,2,3,7,8,9-HxCDD		ND(0.0000000018)	ND(0.0000000048	ND(0.0000000046	ND(0.0000000055)	NA	NA
HxCDDs (total)		ND(0.000000018)	ND(0.0000000049	ND(0.0000000045	ND(0.0000000054)	NA	NA
1,2,3,4,6,7,8-HpCD		ND(0.000000037) >			ND(0.000000034)	NA	NA
HpCDDs (total)		ND(0.000000037) >	ND(0.0000000029	0.0000000036	ND(0.000000034)	NA	NA
OCDD		0.000000017 J			ND(0.0000000040)	NA	NA
Total TEQs (WHO		0.0000000077	0.0000000042	0.0000000085	0.0000000080	NA	NA
Inorganics-Unfilte	red						
Antimony		ND(0.0600)	ND(0.0600)	0.0140 B	0.00840 B	NA	NA
Arsenic		ND(0.0100)	ND(0.0100) J	ND(0.0100)	ND(0.0100)	NA	NA
Barium		ND(0.200)	0.0240 B	0.0340 B	0.0460 B	NA	NA
Beryllium		ND(0.00100)	ND(0.00100)	ND(0.00100)	ND(0.00100)	NA	NA
Cadmium		ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)	NA	NA
Chromium		ND(0.0100)	0.00400 B	ND(0.0100)	ND(0.0100)	NA	NA
Cobalt		ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)	NA	NA
Copper		ND(0.0250)	0.00500 B	0.00140 B	ND (0.025)	NA	NA
Cyanide		0.0180	0.00270 B	ND(0.0100)	ND(0.0100)	NA	NA
Lead		ND(0.00300)	ND(0.00300)	ND(0.00300) J	ND(0.00300)	NA	NA
Mercury		ND(0.000200)	0.000370 J	ND(0.000200) J	ND(0.000200)	NA	NA
Nickel		ND(0.0400)	0.00250 B	ND(0.0400)	0.00240 B	NA	NA
Selenium		ND(0.00500)	ND(0.00500)	ND(0.00500) J	ND(0.00500) J	NA	NA
Silver		ND(0.00500)	ND(0.00500)	ND(0.00500)	0.00140 B	NA	NA
Sulfide		ND(5.00)	ND(5.00)	ND(5.00)	ND(5.00)	NA	NA
Thallium		ND(0.0100)	ND(0.0100) J	ND(0.0100) J	ND(0.0100)	NA	NA
Tin		ND(0.0300)	ND(0.0300)	ND(0.0300)	ND(0.0300)	NA	NA
Vanadium		ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)	NA	NA
Zinc		0.0120 B	0.0170 J	0.0140 J	ND (0.020)	NA	NA
Inorganics-Filtered	d						
Antimony		ND(0.0600)	ND(0.0600)	0.00750 B	ND(0.0600)	NA	NA
Arsenic		ND(0.100)	ND(0.0100) J	ND(0.0100)	ND(0.0100)	NA	NA
Barium		ND(0.200)	0.0240 B	0.0360 B	0.0460 B	NA	NA
Beryllium		ND(0.00100)	ND(0.00100)	ND(0.00100)	ND(0.00100)	NA	NA
Cadmium		ND(0.0100)	ND(0.00500)	ND(0.00500)	ND(0.00500)	NA	NA
Chromium		ND(0.0250)	ND(0.0100)	ND(0.0100)	ND(0.0100)	NA NA	NA
Copper		ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)	NA	NA
Cypper		0.00450 B	ND(0.0250) 0.00240 B	0.00150 B ND(0.0100)	ND(0.025)	NA ND(0.0100)	NA ND(0.0100)
Cyanide Lead		NA ND(0.00300)	ND(0.00300)	ND(0.0100) ND(0.00300) J	ND(0.0100) ND(0.00300)	ND(0.0100) NA	ND(0.0100) NA
		ND(0.00300) ND(0.000200)	0.000580 J	ND(0.00300) J	ND(0.00300) ND(0.000200)	NA NA	NA NA
Mercury Nickel		ND(0.000200)	0.000580 J 0.00230 B	ND(0.000200) J	0.00160 B	NA NA	NA NA
Selenium		ND(0.0400) ND(0.00500)	ND(0.00500)	ND(0.00500) J	ND(0.00500) J	NA NA	NA NA
Silver		ND(0.00500)	ND(0.00500)	ND(0.00500) 3	ND(0.00500) 3	NA NA	NA NA
Thallium		ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)	NA NA	NA NA
Tin		ND(0.0300)	ND(0.0300)	ND(0.0300)	ND(0.0300)	NA NA	NA
[ 1 11 1			ND(0.0500)	ND(0.0500)	ND(0.0500)	NA NA	NA
Vanadium		ND(0.0500)	1 101 101 (150(0)	1 1011100 05000	NI )(() ()5(())	NΙΔ	

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-1 04/17/06	GMA2-1 11/07/06	GMA2-1 03/08/07
Volatile Organics		0.0.1100	3.1103.100	53,53,51
1,1,1,2-Tetrachlor		NA	NA	NA NA
1,1,1-Trichloroeth	nane	NA	NA NA	NA NA
1,1,2,2-Tetrachlor		NA	NA	NA NA
1.1.2-Trichloroeth		NA	NA NA	NA NA
1,1-Dichloroethan		NA	NA NA	NA NA
1,1-Dichloroethen		NA	NA	NA NA
1,2,3-Trichloropro		NA	NA	NA NA
1,2-Dibromo-3-ch		NA	NA	NA NA
1,2-Dibromoethar		NA	NA NA	NA NA
1,2-Dichloroethan		NA	NA	NA NA
1,2-Dichloropropa		NA	NA	NA NA
1,4-Dioxane		NA	NA	NA NA
2-Butanone		NA	NA	NA NA
2-Chloro-1,3-buta	diene	NA NA	NA NA	NA NA
2-Chloroethylviny		NA NA	NA NA	NA NA
2-Hexanone		NA NA	NA NA	NA NA
3-Chloropropene		NA NA	NA NA	NA NA
4-Methyl-2-pentar	none	NA NA	NA NA	NA NA
Acetone	lone	NA NA	NA NA	NA NA
Acetonie		NA NA	NA NA	NA NA
Acrolein		NA NA	NA NA	NA NA
		NA NA	NA NA	NA NA
Acrylonitrile				NA NA
Benzene	4h a - a	NA NA	NA NA	NA NA
Bromodichlorome	mane			I .
Bromoform		NA NA	NA NA	NA NA
Bromomethane		NA	NA NA	NA NA
Carbon Disulfide	-,	NA NA	NA NA	NA NA
Carbon Tetrachlo	ride	NA	NA NA	NA
Chlorobenzene		NA	NA NA	NA NA
Chloroethane		NA	NA	NA
Chloroform		NA	NA	NA
Chloromethane		NA	NA NA	NA
cis-1,3-Dichloropr		NA	NA	NA
Dibromochlorome		NA	NA	NA
Dibromomethane		NA	NA	NA
Dichlorodifluorom		NA	NA	NA
Ethyl Methacrylate	e	NA	NA	NA
Ethylbenzene		NA	NA	NA
Iodomethane		NA	NA	NA
Isobutanol		NA	NA	NA
Methacrylonitrile		NA	NA	NA
Methyl Methacryla		NA	NA	NA
Methylene Chloric	e	NA	NA	NA
Propionitrile		NA	NA	NA
Styrene		NA	NA	NA
Tetrachloroethene	е	NA	NA	NA
Toluene		NA	NA	NA
trans-1,2-Dichlord	oethene	NA	NA	NA
trans-1,3-Dichlord	propene	NA	NA	NA
trans-1,4-Dichloro	o-2-butene	NA	NA	NA
Trichloroethene		NA	NA	NA
Trichlorofluorome	thane	NA	NA	NA
Vinyl Acetate		NA	NA	NA
Vinyl Chloride		NA	NA	NA NA
Xylenes (total)		NA	NA	NA

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

	Sample ID:	GMA2-1	GMA2-1	GMA2-1
Parameter	Date Collected:	04/17/06	11/07/06	03/08/07
PCBs-Unfiltered				
Aroclor-1016		NA	NA	NA
Aroclor-1221		NA	NA	NA
Aroclor-1232		NA	NA	NA
Aroclor-1242		NA	NA	NA
Aroclor-1248		NA	NA	NA
Aroclor-1254		NA	NA	NA
Aroclor-1260		NA	NA	NA
Total PCBs		NA	NA	NA
PCBs-Filtered				
Aroclor-1016		ND(0.000065) [ND(0.00006	5)ND(0.00011) J [ND(0.00011) J	IND(0.00010) J [ND(0.00010)
Aroclor-1221			5)ND(0.00011) J [ND(0.00011) J	
Aroclor-1232			5)ND(0.00011) J [ND(0.00011) J	
Aroclor-1242		ND(0.000065) [ND(0.00006	5)ND(0.00011) J [ND(0.00011) J	ND(0.00010) J [ND(0.00010)
Aroclor-1248		ND(0.000065) [ND(0.00006	5)ND(0.00011) J [ND(0.00011) J	ND(0.00010) J [ND(0.00010)
Aroclor-1254		0.00033 J [0.0016 J]	ND(0.00011) J [ND(0.00011) J	ND(0.00010) J [ND(0.00010)
Aroclor-1260		ND(0.000065) J [0.00070 \	J] ND(0.00011) J [ND(0.00011) J	IND(0.00010) J [ND(0.00010)
Total PCBs		0.00033 J [0.0023 J]	ND(0.00011) J [ND(0.00011) J	
Semivolatile Org	janics	-		
1,2,4,5-Tetrachlo		NA	l NA	NA NA
1,2,4-Trichlorobe		NA	NA NA	NA NA
1,2-Dichlorobenze		NA	NA NA	NA NA
1,2-Diphenylhydra	azine	NA	NA	NA
1.3.5-Trinitrobenz		NA	NA NA	NA
1.3-Dichlorobenze		NA	NA NA	NA
1,3-Dinitrobenzer	ne	NA	NA NA	NA NA
1,4-Dichlorobenze		NA	NA NA	NA
1,4-Naphthoquino		NA	NA NA	NA
1-Naphthylamine		NA	NA NA	NA
2,3,4,6-Tetrachlo		NA	NA NA	NA
2,4,5-Trichloroph		NA	NA	NA
2,4,6-Trichloroph		NA	NA	NA
2,4-Dichlorophen		NA	NA	NA
2,4-Dimethylphen	nol	NA	NA	NA
2,4-Dinitrophenol		NA	NA	NA
2,4-Dinitrotoluene	)	NA	NA	NA
2,6-Dichlorophen		NA	NA	NA
2,6-Dinitrotoluene	)	NA	NA	NA
2-Acetylaminofluc	orene	NA	NA	NA
2-Chloronaphthal		NA	NA	NA
2-Chlorophenol		NA	NA	NA
2-Methylnaphthal	ene	NA	NA	NA
2-Methylphenol		NA	NA	NA
2-Naphthylamine		NA	NA	NA
2-Nitroaniline		NA	NA	NA
2-Nitrophenol		NA	NA	NA
2-Picoline		NA	NA	NA
3&4-Methylpheno		NA	NA	NA
3,3'-Dichlorobenz		NA	NA	NA
3,3'-Dimethylbenz		NA	NA	NA
3-Methylcholanth	rene	NA	NA	NA
3-Nitroaniline		NA	NA	NA
4,6-Dinitro-2-meth	nylphenol	NA	NA	NA
4-Aminobiphenyl		NA	NA	NA
4-Bromophenyl-p		NA	NA	NA
4-Chloro-3-Methy	/lphenol	NA	NA	NA
4-Chloroaniline		NA	NA	NA
4-Chlorobenzilate		NA	NA	NA
4-Chlorophenyl-p	henylether	NA	NA	NA
4-Nitroaniline		NA	NA	NA
4-Nitrophenol		NA	NA	NA
Semivolatile Org	ganics (continued)			

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-1 04/17/06	GMA2-1 11/07/06	GMA2-1 03/08/07
4-Nitroquinoline-1	-oxide	NA	NA	NA
4-Phenylenediam		NA	NA	NA
5-Nitro-o-toluidine	)	NA	NA	NA
7,12-Dimethylben	z(a)anthracene	NA	NA	NA
a,a'-Dimethylpher	nethylamine	NA	NA	NA
Acenaphthene		NA	NA	NA
Acenaphthylene		NA	NA	NA
Acetophenone		NA	NA	NA
Aniline		NA	NA	NA
Anthracene		NA	NA	NA
Aramite		NA	NA	NA
Benzidine		NA	NA	NA
Benzo(a)anthrace	ene	NA	NA	NA
Benzo(a)pyrene		NA	NA	NA
Benzo(b)fluoranth		NA	NA	NA
Benzo(g,h,i)peryl		NA	NA	NA
Benzo(k)fluoranth	nene	NA	NA	NA
Benzyl Alcohol	,	NA	NA	NA
bis(2-Chloroethox		NA	NA	NA
bis(2-Chloroethyl)		NA	NA	NA
bis(2-Chloroisopr		NA	NA	NA
bis(2-Ethylhexyl)p		NA	NA	NA
Butylbenzylphtha	late	NA	NA	NA
Chrysene		NA	NA	NA
Diallate		NA	NA	NA
Dibenzo(a,h)anth	racene	NA	NA	NA
Dibenzofuran		NA	NA	NA
Diethylphthalate		NA	NA	NA
Dimethylphthalate		NA	NA	NA
Di-n-Butylphthala		NA	NA	NA
Di-n-Octylphthala	te	NA	NA	NA
Diphenylamine		NA	NA	NA
Ethyl Methanesul	fonate	NA	NA	NA
Fluoranthene		NA	NA NA	NA
Fluorene		NA	NA	NA
Hexachlorobenze		NA	NA NA	NA
Hexachlorobutadi		NA	NA NA	NA NA
Hexachlorocyclop		NA	NA	NA
Hexachloroethan		NA	NA NA	NA NA
Hexachlorophene		NA	NA NA	NA NA
Hexachloroprope		NA	NA NA	NA NA
Indeno(1,2,3-cd)p	byrene	NA NA	NA NA	NA NA
Isodrin		NA NA	NA NA	NA NA
Isophorone		NA NA	NA NA	NA NA
Isosafrole Methanyrilana		NA NA	NA NA	NA NA
Methapyrilene	ulfonoto	NA NA	NA NA	NA NA
Methyl Methanes	unoriale	NA NA	NA NA	NA NA
Naphthalene Nitrobenzene		NA NA	NA NA	NA NA
N-Nitrosenzene N-Nitrosodiethyla	mino	NA NA	NA NA	NA NA
N-Nitrosodietnyla		NA NA	NA NA	NA NA
N-Nitrosodimetny		NA NA	NA NA	NA NA
N-Nitroso-di-n-bu		NA NA	NA NA	NA NA
N-Nitrosodipheny		NA NA	NA NA	NA NA
N-Nitrosomethyle		NA NA	NA NA	NA NA
N-Nitrosomorpho		NA NA	NA NA	NA NA
N-Nitrosopiperidir		NA NA	NA NA	NA NA
N-Nitrosopiperidir N-Nitrosopyrrolidi		NA NA	NA NA	NA NA
o,o,o-Triethylphos		NA NA	NA NA	NA NA
o,o,o-Triethylphos o-Toluidine	priorounioate	NA NA	NA NA	NA NA
	ionics (continued)	I W/T	IVA	INA
amining charmer of C	janics (continued)	NA	NA	

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-1 04/17/06	GMA2-1 11/07/06	GMA2-1 03/08/07
Pentachlorobenz		NA	NA	NA
Pentachloroetha		NA NA	NA NA	NA NA
Pentachloronitro		NA NA	NA NA	NA NA
Pentachloropher		NA NA	NA NA	NA NA
Phenacetin		NA NA	NA NA	NA NA
Phenanthrene		NA	NA NA	NA NA
Phenol		NA	NA NA	NA NA
Pronamide		NA NA	NA NA	NA NA
Pyrene		NA	NA NA	NA NA
Pyridine		NA	NA NA	NA NA
Safrole		NA	NA NA	NA NA
Thionazin		NA NA	NA NA	NA NA
Organochlorine	Pesticides		147.	101
4.4'-DDD	i esticides	NA	NA	NA
4,4'-DDE		NA NA	NA NA	NA NA
4,4'-DDT				
		NA NA	NA NA	NA NA
Aldrin		NA NA	NA NA	NA NA
Alpha-BHC		NA NA	NA NA	NA NA
Alpha-Chlordane	;	NA	NA NA	NA NA
Beta-BHC		NA	NA NA	NA
Delta-BHC		NA	NA	NA NA
Dieldrin		NA	NA	NA
Endosulfan I		NA	NA	NA
Endosulfan II		NA	NA	NA
Endosulfan Sulfa	ate	NA	NA	NA
Endrin		NA	NA	NA
Endrin Aldehyde		NA	NA	NA
Endrin Ketone		NA	NA	NA
Gamma-BHC (Li		NA	NA	NA
Gamma-Chlorda	ine	NA	NA	NA
Heptachlor		NA	NA	NA
Heptachlor Epox	ride	NA	NA	NA
Kepone		NA	NA	NA
Methoxychlor		NA	NA	NA
Technical Chloro	dane	NA	NA	NA
Toxaphene		NA	NA	NA
Organophosph	ate Pesticides			
Dimethoate		NA	NA	NA
Disulfoton		NA	NA	NA
Ethyl Parathion		NA	NA	NA
Famphur		NA	NA	NA
Methyl Parathion	1	NA	NA	NA
Phorate		NA	NA	NA
Sulfotep		NA	NA	NA
None Detected		NA	NA NA	NA NA
Herbicides	ı			
2,4,5-T		NA	NA	NA
2.4.5-TP		NA NA	NA NA	NA NA
2,4,5-17 2,4-D		NA NA	NA NA	NA NA
Dinoseb		NA NA	NA NA	NA NA
None Detected		NA NA	NA NA	NA NA
Furans		INA	IAV	14/7
2,3,7,8-TCDF	ı	NΙΛ	NI A	N. A.
		NA NA	NA NA	NA NA
TCDFs (total)	-		NA NA	NA NA
1,2,3,7,8-PeCDF		NA NA	NA NA	NA NA
2,3,4,7,8-PeCDF	-	NA NA	NA NA	NA NA
PeCDFs (total)	\	NA	NA NA	NA NA
1,2,3,4,7,8-HxC[		NA	NA NA	NA
1,2,3,6,7,8-HxC[		NA	NA NA	NA
1,2,3,7,8,9-HxC[		NA	NA	NA
2,3,4,6,7,8-HxCI	OF	NA	NA	NA
HxCDFs (total)		NA	NA	NA

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

	Sample ID:	GMA2-1	GMA2-1	GMA2-1
Parameter	Date Collected:	04/17/06	11/07/06	03/08/07
1,2,3,4,6,7,8-Hp		NA	NA	NA
1,2,3,4,7,8,9-Hpt	CDF	NA	NA	NA
HpCDFs (total)		NA	NA NA	NA NA
OCDF		NA	NA	NA
Dioxins				
2,3,7,8-TCDD		NA	NA	NA NA
TCDDs (total)		NA	NA NA	NA NA
1,2,3,7,8-PeCDE	)	NA NA	NA NA	NA NA
PeCDDs (total)	חח	NA NA	NA NA	NA NA
1,2,3,4,7,8-HxC[ 1,2,3,6,7,8-HxC[		NA NA	NA NA	NA NA
1,2,3,7,8,9-HxC[		NA NA	NA NA	NA NA
HxCDDs (total)	50	NA NA	NA NA	NA NA
1,2,3,4,6,7,8-Hp	CDD	NA NA	NA NA	NA NA
HpCDDs (total)	ODD	NA NA	NA NA	NA NA
OCDD		NA	NA NA	NA NA
Total TEQs (WH	O TEFs)	NA NA	NA NA	NA NA
Inorganics-Unfi				1
Antimony		NA	NA	NA
Arsenic		NA NA	NA NA	NA NA
Barium		NA	NA	NA NA
Beryllium		NA	NA	NA
Cadmium		NA	NA	NA NA
Chromium		NA	NA	NA
Cobalt		NA	NA	NA
Copper		NA	NA	NA
Cyanide		NA	NA	NA
Lead		NA	NA	NA
Mercury		NA	NA	NA
Nickel		NA	NA	NA
Selenium		NA	NA	NA
Silver		NA	NA	NA
Sulfide		NA	NA	NA
Thallium		NA	NA	NA NA
Tin		NA	NA NA	NA NA
Vanadium		NA NA	NA NA	NA NA
Zinc Inorganics-Filte	wad	INA	INA	INA
Antimony	ireu	NA	NA	NA
Arsenic		NA NA	NA NA	NA NA
Barium		NA NA	NA NA	NA NA
Beryllium		NA NA	NA NA	NA NA
Cadmium		NA NA	NA NA	NA NA
Chromium		NA NA	NA NA	NA NA
Cobalt		NA NA	NA NA	NA NA
Copper		NA	NA NA	NA NA
Cyanide		NA	NA NA	NA
Lead		NA	NA	NA
Mercury		NA	NA	NA
Nickel		NA	NA	NA
Selenium		NA	NA	NA
Silver		NA	NA	NA
Thallium		NA	NA	NA
Tin		NA	NA	NA
Vanadium		NA	NA	NA
Zinc		NA	NA	NA

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

D	Sample ID:	GMA2-2	GMA2-2	GMA2-2
Parameter Volatile Organic	Date Collected:	04/15/02	10/16/02	04/25/03
1,1,1,2-Tetrachlo		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
1,1,1-Trichloroeth		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
1,1,2,2-Tetrachlo		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
1,1,2-Trichloroeth		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
1,1-Dichloroethar		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
1,1-Dichloroether		ND(0.0030) [ND(0.0030)]	ND(0.0030) [ND(0.0030)]	ND(0.0030)
1,2,3-Trichloropro		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
1,2-Dibromo-3-ch		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
1,2-Dibromoetha		ND(0.0030) [ND(0.0030)]	ND(0.0030) [ND(0.0030)]	ND(0.0030)
1.2-Dichloroethar		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
1,2-Dichloropropa		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
1,4-Dioxane	anc	ND(0.20) [ND(0.20)]	ND(0.200) J [ND(0.20)]	ND(0.000)
2-Butanone		ND(0.20) [ND(0.20)]	ND(0.200) 3 [ND(0.20)]	ND(0.010)
2-Chloro-1,3-buta	adiene	ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
2-Chloroethylviny		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050) J
2-Hexanone	lettiei	ND(0.0030) [ND(0.0030)]	ND(0.0000) [ND(0.0000)]	ND(0.0030) 3
3-Chloropropene		ND(0.0050) [ND(0.0050)]	ND(0.010) [ND(0.010)] ND(0.0050) [ND(0.0050)]	ND(0.0050)
4-Methyl-2-penta		ND(0.0030) [ND(0.0030)] ND(0.010) [ND(0.010)]	ND(0.0030) [ND(0.0030)]	ND(0.0050) ND(0.010)
Acetone	HOHE	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	0.018
Acetonitrile		ND(0.10) [ND(0.10)]	ND(0.100) J [ND(0.100) J]	ND(0.10) J
Acrolein		ND(0.10) [ND(0.10)]	ND(0.100) J [ND(0.100) J]	ND(0.10) J
Acrylonitrile		ND(0.10) [ND(0.10)] ND(0.0050) [ND(0.0050)]	ND(0.0050) J [ND(0.0050) J]	ND(0.10) 3 ND(0.0050)
Benzene		ND(0.0050) [ND(0.0050)]	ND(0.0050) 3 [ND(0.0050) 3] ND(0.0050) [ND(0.0050)]	` '
Bromodichlorome	thono	ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050) ND(0.0050)
	etriane	ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	\ /
Bromoform			ND(0.0050) [ND(0.0050)] ND(0.0020) [ND(0.0020)]	ND(0.0050)
Bromomethane Carbon Disulfide		ND(0.0020) [ND(0.0020)]	( /1	ND(0.0020)
		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Carbon Tetrachlo	oriae	ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Chlorobenzene		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Chloroethane		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Chloroform		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Chloromethane		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
cis-1,3-Dichlorop		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Dibromochlorome		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Dibromomethane		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Dichlorodifluorom		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050) J
Ethyl Methacrylat	ie	ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Ethylbenzene		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
lodomethane		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Isobutanol		ND(0.10) [ND(0.10)]	ND(0.10) [ND(0.10)]	ND(0.10) J
Methacrylonitrile	-1-	ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Methyl Methacryl		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Methylene Chlori	de	ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Propionitrile		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010) J
Styrene		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Tetrachloroethen	е	0.0018 J [0.0020]	0.0017 J [0.0024]	0.0014 J
Toluene		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
trans-1,2-Dichlor		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
trans-1,3-Dichlor		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
trans-1,4-Dichlore	D-Z-butene	ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Trichloroethene		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Trichlorofluorome	etnane	ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Vinyl Acetate		ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Vinyl Chloride		ND(0.0020) [ND(0.0020)]	ND(0.0020) [ND(0.0020)]	ND(0.0020)
Xylenes (total)		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Total VOCs		0.0018 J [0.0020]	0.0017 J [0.0024]	0.019 J

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

	Sample ID:	GMA2-2	GMA2-2	GMA2-2
Parameter	Date Collected:	04/15/02	10/16/02	04/25/03
PCBs-Unfiltered				
Aroclor-1016		ND(0.000065) [ND(0.00025)]	ND(0.000065) [ND(0.000065)]	ND(0.000065)
Aroclor-1221		ND(0.000065) [ND(0.00025)]	ND(0.000065) [ND(0.000065)]	ND(0.000065)
Aroclor-1232		ND(0.000065) [ND(0.00025)]	ND(0.000065) [ND(0.000065)]	ND(0.000065)
Aroclor-1242 Aroclor-1248		ND(0.000065) [ND(0.00025)] ND(0.000065) [ND(0.00025)]	ND(0.000065) [ND(0.000065)] ND(0.000065) [ND(0.000065)]	ND(0.000065) ND(0.000065)
Aroclor-1248 Aroclor-1254		0.000038 J [0.00048 J]	ND(0.000065) [ND(0.000065)]	0.00028
Aroclor-1260		ND(0.000065) [0.000046 J]	ND(0.000065) [ND(0.000065)]	ND(0.00065)
Total PCBs		0.000038 J [0.000074 J]	ND(0.000065) [ND(0.000065)]	0.00028
PCBs-Filtered		0.000000 0 [0.00007 4 0]	112(0.000000) [142(0.000000)]	0.00020
Aroclor-1016		ND(0.000065) [ND(0.000065)]	ND(0.000065) [ND(0.000065)]	ND(0.000065)
Aroclor-1221		ND(0.000065) [ND(0.000065)]	ND(0.000065) [ND(0.000065)]	ND(0.000065)
Aroclor-1232		ND(0.000065) [ND(0.000065)]	ND(0.000065) [ND(0.000065)]	ND(0.000065)
Aroclor-1242		ND(0.000065) [ND(0.000065)]	ND(0.000065) [ND(0.000065)]	ND(0.000065)
Aroclor-1248		ND(0.000065) [ND(0.000065)]	ND(0.000065) [ND(0.000065)]	ND(0.000065)
Aroclor-1254		ND(0.000065) [ND(0.000065)]	ND(0.000065) [0.000052 J]	0.00023
Aroclor-1260		ND(0.000065) [ND(0.000065)]	ND(0.000065) [ND(0.000065)]	ND(0.000065)
Total PCBs		ND(0.000065) [ND(0.000065)]	ND(0.000065) [0.000052 J]	0.00023
Semivolatile Org	anics			
1,2,4,5-Tetrachlor		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
1,2,4-Trichloroben	izene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
1,2-Dichlorobenze		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
1,2-Diphenylhydra		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
1,3,5-Trinitrobenze		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
1,3-Dichlorobenze		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
1,3-Dinitrobenzen		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
1,4-Dichlorobenze		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
1,4-Naphthoquino	ne	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
1-Naphthylamine		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
2,3,4,6-Tetrachlor		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
2,4,5-Trichlorophe		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
2,4,6-Trichlorophe		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
2,4-Dichloropheno 2,4-Dimethylpheno		ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) ND(0.010)
2,4-Dimetriyiphend	JI	ND(0.050) [ND(0.050)]	ND(0.010) [ND(0.010)] ND(0.050) [ND(0.050)]	ND(0.050) J
2,4-Dinitropriend		ND(0.030) [ND(0.030)]	ND(0.030) [ND(0.030)]	ND(0.030) J
2,6-Dichloropheno		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010) 3
2,6-Dinitrotoluene		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010) J
2-Acetylaminofluo		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
2-Chloronaphthale		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
2-Chlorophenol		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
2-Methylnaphthale	ene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
2-Methylphenol		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
2-Naphthylamine		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
2-Nitroaniline		ND(0.050) [ND(0.050)]	ND(0.050) [ND(0.050)]	ND(0.050) J
2-Nitrophenol		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
2-Picoline		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
3&4-Methylphenol		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
3,3'-Dichlorobenzi		ND(0.020) [ND(0.020)]	ND(0.020) [ND(0.020)]	ND(0.020) J
3,3'-Dimethylbenz		ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
3-Methylcholanthr	ene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
3-Nitroaniline	v de la e e e l	ND(0.050) [ND(0.050)]	ND(0.050) [ND(0.050)]	ND(0.050) J
4,6-Dinitro-2-meth	yıpnenoi	ND(0.050) [ND(0.050)]	ND(0.050) [ND(0.050)]	ND(0.050) J
4-Aminobiphenyl	a on vioth or	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
4-Bromophenyl-ph		( ) [ /2	ND(0.010) [ND(0.010)]	ND(0.010)
4-Chloro-3-Methyl	prierioi	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) ND(0.010) J
4-Chloroaniline 4-Chlorobenzilate		ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) J ND(0.010)
4-Chlorophenyl-ph	nenylether	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) ND(0.010)
4-Nitroaniline	ionyletriei	ND(0.050) [ND(0.050)]	ND(0.010) [ND(0.010)] ND(0.050) [ND(0.050)]	ND(0.050) J
4-Nitrophenol		ND(0.050) [ND(0.050)]	ND(0.050) [ND(0.050)]	ND(0.050)
Semivolatile Org	anics (continued)	(1.000) [110(0.000)]	112(0.000) [112(0.000)]	115(0.000)
Sommonaule Oly	amos (sommucu)			

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Sample ID Parameter Date Collected		GMA2-2 10/16/02	GMA2-2 04/25/03
4-Nitroquinoline-1-oxide	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
4-Phenylenediamine	ND(0.010) [ND(0.010)]	ND(0.0100) J [ND(0.0100) J]	ND(0.010)
5-Nitro-o-toluidine	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
7,12-Dimethylbenz(a)anthracene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
a,a'-Dimethylphenethylamine	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Acenaphthene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Acenaphthylene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Acetophenone	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Aniline	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Anthracene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Aramite	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010) J
Benzidine	ND(0.020) [ND(0.020)]	ND(0.0200) J [ND(0.0200) J]	ND(0.020)
Benzo(a)anthracene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Benzo(a)pyrene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Benzo(b)fluoranthene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Benzo(g,h,i)perylene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Benzo(k)fluoranthene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Benzyl Alcohol	ND(0.020) [ND(0.020)]	ND(0.020) [ND(0.020)]	ND(0.020) J
bis(2-Chloroethoxy)methane	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
bis(2-Chloroethyl)ether	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
bis(2-Chloroisopropyl)ether	( ) [ ( ) ]	ND(0.010) [ND(0.010)]	ND(0.010)
bis(2-Ethylhexyl)phthalate	ND(0.0060) [ND(0.0060)] ND(0.010) [ND(0.010)]	ND(0.0060) [ND(0.0060)]	ND(0.0060) J
Butylbenzylphthalate Chrysene	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010)
Diallate	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010) ND(0.010)
Dibenzo(a,h)anthracene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Dibenzofuran	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Diethylphthalate	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Dimethylphthalate	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Di-n-Butylphthalate	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Di-n-Octylphthalate	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Diphenylamine	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Ethyl Methanesulfonate	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Fluoranthene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Fluorene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Hexachlorobenzene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Hexachlorobutadiene	ND(0.0010) [ND(0.0010)]	ND(0.0010) J [ND(0.0010)]	ND(0.0010)
Hexachlorocyclopentadiene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Hexachloroethane	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Hexachlorophene	ND(0.020) [ND(0.020)]	ND(0.0200) J [ND(0.0200) J]	ND(0.020)
Hexachloropropene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010) J
Indeno(1,2,3-cd)pyrene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Isodrin	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Isophorone	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Isosafrole	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Methapyrilene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Methyl Methanesulfonate	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Naphthalene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Nitrobenzene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
N-Nitrosodiethylamine	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
N-Nitrosodimethylamine	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
N-Nitroso-di-n-butylamine	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010)
N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010)
N-Nitrosodipnenylamine N-Nitrosomethylethylamine	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) ND(0.010)
N-Nitrosomorpholine	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
N-Nitrosopiperidine	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
N-Nitrosopyrrolidine	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
o,o,o-Triethylphosphorothioate	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
o-Toluidine	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Semivolatile Organics (continued)	112 (0.010) [112 (0.010)]	145 (0.010) [145 (0.010)]	115(0.010)
p-Dimethylaminoazobenzene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
P Dimonylaminoazobenzene	145(0.010) [145(0.010)]	145(0.010) [145(0.010)]	140(0.010)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Sample I	D: GMA2-2	GMA2-2	GMA2-2
Parameter Date Collecte	d: 04/15/02	10/16/02	04/25/03
Pentachlorobenzene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010) J
Pentachloroethane	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Pentachloronitrobenzene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Pentachlorophenol	ND(0.050) [ND(0.050)]	ND(0.050) [ND(0.050)]	ND(0.050)
Phenacetin	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Phenanthrene	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Phenol	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Pronamide	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Pyrene Pyridine	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010) ND(0.010)
Safrole	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010)
Thionazin	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Organochlorine Pesticides	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
	ND(0.00040) [ND(0.00040)]	ND(0.00040) [ND(0.00040)]	ND(0.00040)
4,4'-DDD 4,4'-DDE	ND(0.00010) [ND(0.00010)] ND(0.00010) [ND(0.00010)]	ND(0.00010) [ND(0.00010)] ND(0.00010) [ND(0.00010)]	ND(0.00010) ND(0.00010)
4,4'-DDE 4,4'-DDT	ND(0.00010) [ND(0.00010)]	ND(0.00010) [ND(0.00010)]	ND(0.00010)
Aldrin	ND(0.00010) [ND(0.00010)] ND(0.000050) [ND(0.000050)]	ND(0.00010) [ND(0.00010)]	ND(0.00010)
Alpha-BHC	ND(0.000050) [ND(0.000050)]	ND(0.000050) [ND(0.000050)]	ND(0.000050)
Alpha-Chlordane	ND(0.000050) [ND(0.000050)]	ND(0.00050) [ND(0.00050)]	ND(0.000050)
Beta-BHC	ND(0.000050) [ND(0.000050)]	ND(0.000050) [ND(0.000050)]	ND(0.000050)
Delta-BHC	ND(0.000050) [ND(0.000050)]	ND(0.000050) [ND(0.000050)]	ND(0.000050)
Dieldrin	ND(0.00010) [ND(0.00010)]	ND(0.00010) [ND(0.00010)]	ND(0.00010)
Endosulfan I	ND(0.00010) [ND(0.00010)]	ND(0.00010) [ND(0.00010)]	ND(0.00010)
Endosulfan II	ND(0.00010) [ND(0.00010)]	ND(0.00010) [ND(0.00010)]	ND(0.00010)
Endosulfan Sulfate	ND(0.00010) [ND(0.00010)]	ND(0.00010) [ND(0.00010)]	ND(0.00010)
Endrin	ND(0.00010) [ND(0.00010)]	ND(0.00010) [ND(0.00010)]	ND(0.00010)
Endrin Aldehyde	ND(0.00010) [ND(0.00010)]	ND(0.00010) [ND(0.00010)]	ND(0.00010)
Endrin Ketone	ND(0.00010) [ND(0.00010)]	ND(0.00010) [ND(0.00010)]	ND(0.00010)
Gamma-BHC (Lindane)	ND(0.000050) [ND(0.000050)]	ND(0.000050) [ND(0.000050)]	ND(0.000050)
Gamma-Chlordane	ND(0.000050) [ND(0.000050)]	ND(0.000050) [ND(0.000050)]	ND(0.000050)
Heptachlor	ND(0.000050) [ND(0.000050)]	ND(0.000050) [ND(0.000050)]	ND(0.000050)
Heptachlor Epoxide	ND(0.000050) [ND(0.000050)]	ND(0.000050) [ND(0.000050)]	ND(0.000050)
Kepone	ND(0.050) [ND(0.050)]	ND(0.050) [ND(0.050)]	ND(0.050)
Methoxychlor	ND(0.00050) [ND(0.00050)]	ND(0.00050) [ND(0.00050)]	ND(0.00050)
Technical Chlordane	ND(0.00050) [ND(0.00050)]	ND(0.00050) [ND(0.00050)]	ND(0.00050)
Toxaphene	ND(0.0010) [ND(0.0010)]	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Organophosphate Pesticides			
Dimethoate	ND(0.050) [ND(0.050)]	ND(0.050) [ND(0.050)]	ND(0.050)
Disulfoton	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Ethyl Parathion	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Famphur	ND(0.050) [ND(0.050)]	ND(0.050) [ND(0.050)]	ND(0.050)
Methyl Parathion	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Phorate	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Sulfotep None Detected	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)
Herbicides			
	ND(0.0000) [ND(0.0000)]	ND(0,0000) [ND(0,0000)]	ND(0.0000)
2,4,5-T	ND(0.0020) [ND(0.0020)]	ND(0.0020) [ND(0.0020)]	ND(0.0020)
2,4,5-TP	ND(0.0020) [ND(0.0020)]	ND(0.0020) [ND(0.0020)]	ND(0.0020)
2,4-D Dinoseb	ND(0.010) [ND(0.010)] ND(0.0010) [ND(0.0010)]	ND(0.010) [ND(0.010)] ND(0.0010) [ND(0.0010)]	ND(0.010) ND(0.0010)
None Detected	ND(0.0010) [ND(0.0010)]	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Furans			
2,3,7,8-TCDF	ND(0.000000013) [0.0000000014 ]	ND(0.0000000022) [ND(0.0000000014)]	NID(0.0000000027)
TCDFs (total)	ND(0.0000000012) [0.0000000014 J] ND(0.0000000012) [0.0000000014]	ND(0.0000000022) [ND(0.0000000014)]	
1,2,3,7,8-PeCDF	ND(0.0000000012) [0.0000000014]	0.0000000022) [ND(0.0000000014)]	ND(0.0000000037)
2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF	ND(0.0000000013) [0.0000000000030 3B] ND(0.00000000012) [ND(0.00000000049) X		ND(0.00000000025)
PeCDFs (total)	ND(0.0000000012) [ND(0.0000000049) / ND(0.00000000013) [0.00000000050]	0.0000000017 3 [ND(0.0000000025)]	ND(0.0000000025)
1,2,3,4,7,8-HxCDF	ND(0.0000000011) [0.0000000034 JB	0.0000000038 [ND(0.0000000023)]	ND(0.0000000023)
1,2,3,6,7,8-HxCDF	ND(0.0000000011) [0.0000000034 JB]	ND(0.0000000019) X [ND(0.0000000025)]	
1,2,3,7,8,9-HxCDF	ND(0.0000000011) [0.00000000313]	ND(0.00000000013) X [ND(0.00000000025)]	
2,3,4,6,7,8-HxCDF	ND(0.0000000011) [0.00000000026 J	ND(0.0000000025) [ND(0.0000000025)]	
HxCDFs (total)	ND(0.000000011) [0.00000000203]	0.00000000016 [ND(0.0000000025)]	ND(0.00000000028)
(1.010)	(0.0000000000000000000000000000000		(0.000000020)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

	Sample ID:	GMA2-2	GMA2-2	GMA2-2
Parameter	Date Collected:	04/15/02	10/16/02	04/25/03
1,2,3,4,6,7,8-HpCDF		ND(0.0000000014) [0.0000000034 J]	ND(0.0000000025) [ND(0.0000000025)]	
1,2,3,4,7,8,9-HpCDF		ND(0.0000000017) [0.0000000021 J]	ND(0.0000000026) [ND(0.0000000025)]	
HpCDFs (total)		ND(0.0000000015) [0.0000000055]	ND(0.0000000025) [ND(0.0000000025)]	
OCDF		ND(0.0000000027) [0.0000000029 J]	ND(0.0000000060) [ND(0.0000000049)]	ND(0.000000017)
Dioxins				
2,3,7,8-TCDD		ND(0.0000000015) [ND(0.0000000013) X	ND(0.0000000038) [ND(0.0000000022)]	ND(0.0000000034)
TCDDs (total)		ND(0.0000000015) [ND(0.0000000013) >	ND(0.0000000038) [ND(0.0000000022)]	ND(0.0000000034)
1,2,3,7,8-PeCDD		ND(0.0000000014) [0.0000000032 J]	ND(0.0000000030) [ND(0.0000000025)]	
PeCDDs (total)		ND(0.000000014) [0.000000032]	ND(0.0000000030) [ND(0.0000000025)]	
1,2,3,4,7,8-HxCDD		ND(0.000000015) [0.0000000029 J]	ND(0.0000000038) [ND(0.0000000025)]	
1,2,3,6,7,8-HxCDD		ND(0.000000016) [0.0000000035 J]	ND(0.0000000034) [ND(0.0000000025)]	
1,2,3,7,8,9-HxCDD		ND(0.0000000015) [0.0000000036 J]	ND(0.0000000035) [ND(0.0000000025)]	
HxCDDs (total)		ND(0.000000015) [0.000000010]	ND(0.0000000036) [ND(0.0000000025)]	
1,2,3,4,6,7,8-HpCDD		ND(0.0000000025) [0.0000000020 J]	ND(0.000000036) [ND(0.0000000026)]	
HpCDDs (total)		ND(0.0000000025) [0.0000000020]	ND(0.000000036) [ND(0.000000046)]	
OCDD		0.0000000053 J [ND(0.000000054) X]	ND(0.000000010) [ND(0.000000018)]	
Total TEQs (WHO TE		0.0000000023 [0.0000000078]	0.0000000055 [0.0000000040]	0.0000000054
Inorganics-Unfiltere	d			
Antimony		ND(0.0600) [ND(0.0600)]	ND(0.0600) [ND(0.0600)]	ND(0.0600)
Arsenic		ND(0.0100) [ND(0.0100)]	ND(0.0100) J [ND(0.0100) J]	ND(0.0100)
Barium		ND(0.200) [ND(0.200)]	0.0780 B [0.0740 B]	0.0710 B
Beryllium		ND(0.00100) [ND(0.00100)]	ND(0.00100) [ND(0.00100)]	ND(0.00100)
Cadmium		ND(0.00500) [ND(0.00500)]	0.000530 J [ND(0.00500)]	ND(0.00500)
Chromium		ND(0.0100) [ND(0.0100)]	ND(0.0100) [ND(0.0100)]	ND(0.010)
Cobalt		ND(0.0500) [ND(0.0500)]	ND(0.0500) [ND(0.0500)]	0.00130 B
Copper		ND(0.0250) [ND(0.0250)]	ND(0.0250) [ND(0.0250)]	ND(0.0250)
Cyanide		ND(0.0100) [ND(0.0100)]	ND(0.0100) [ND(0.0100)]	ND(0.0100)
Lead		ND(0.00300) [ND(0.00300)]	ND(0.00300) [ND(0.00300)]	ND(0.00300) J
Mercury		ND(0.000200) [ND(0.000200)]	0.000250 J [0.000340 J]	ND(0.000200) J
Nickel		ND(0.0400) [ND(0.0400)]	0.00280 B [0.00300 B]	ND(0.0400)
Selenium		ND(0.00500) [ND(0.00500)]	ND(0.00500) [ND(0.00500)]	ND(0.00500) J
Silver		ND(0.00500) [ND(0.00500)]	ND(0.00500) [ND(0.00500)]	ND(0.00500)
Sulfide		ND(5.00) [ND(5.00)]	ND(5.00) [ND(5.00)]	ND(5.00)
Thallium		ND(0.0100) [ND(0.0100)]	ND(0.0100) J [ND(0.0100) J]	ND(0.0100) J
Tin		ND(0.0300) [ND(0.0300)]	ND(0.0300) [ND(0.0300)]	ND(0.0300)
Vanadium		ND(0.0500) [ND(0.0500)]	ND(0.0500) [ND(0.0500)]	0.00200 B
Zinc		0.00640 B [0.0130 B]	0.0110 J [0.0130 J]	0.00700 J
Inorganics-Filtered				
Antimony		ND(0.0600) [ND(0.0600)]	ND(0.0600) [ND(0.0600)]	0.0120 B
Arsenic		ND(0.100) [ND(0.100)]	ND(0.0100) J [ND(0.0100) J]	ND(0.0100)
Barium		ND(0.200) [ND(0.200)]	0.0840 B [0.0790 B]	0.0710 B
Beryllium		ND(0.00100) [ND(0.00100)]	ND(0.00100) [ND(0.00100)]	ND(0.00100)
Cadmium		ND(0.0100) [ND(0.0100)]	ND(0.00500) [0.000580 J]	ND(0.00500)
Chromium		ND(0.0250) [ND(0.0250)]	ND(0.0100) [ND(0.0100)]	ND(0.010)
Cobalt		ND(0.0500) [ND(0.0500)]	ND(0.0500) [ND(0.0500)]	0.00200 B
Copper		ND(0.100) [ND(0.100)]	ND(0.0250) [ND(0.0250)]	ND(0.0250)
Cyanide		NA ND(0.00300) [ND(0.00300)]	ND(0.0100) [0.00230 B]	ND(0.0100) ND(0.00300) J
Lead		ND(0.00300) [ND(0.00300)] ND(0.000200) [ND(0.000200)]	ND(0.00300) [ND(0.00300)] 0.000750 [0.000780]	ND(0.00300) J
Mercury Nickel		, , , , , , , , , , , , , , , , , , , ,	0.000750 [0.000780] 0.00280 B [0.00280 B]	ND(0.000200) J ND(0.0400)
Selenium		ND(0.0400) [ND(0.0400)] ND(0.00500) [ND(0.00500)]	ND(0.00500) [ND(0.00500)]	ND(0.0400) ND(0.00500) J
Silver		ND(0.00500) [ND(0.00500)] ND(0.00500) [ND(0.00500)]	ND(0.00500) [ND(0.00500)]	ND(0.00500) 3
Thallium		ND(0.00500) [ND(0.00500)] ND(0.0100) [ND(0.0100)]		ND(0.00500) ND(0.0100) J
Tin		ND(0.0100) [ND(0.0100)] ND(0.0300) [ND(0.0300)]	ND(0.0100) J [ND(0.0100) J] ND(0.0300) [ND(0.0300)]	` ′
Vanadium		0.00380 B [0.00370 B]	ND(0.0300) [ND(0.0300)] ND(0.0500) [ND(0.0500)]	ND(0.0300) 0.00220 B
		ND(0.0200) [ND(0.0200)]	ND(0.0500) [ND(0.0500)] ND(0.0200) J [0.00820 J]	0.00220 B 0.00700 J
Zinc		ואט(ט.טבטט) [ואט(ט.טבטט)]	ואט(ט.טבטט) א [ט.טטסבט אן	0.00700 J

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

	Sample ID:	GMA2-2	GMA2-3	GMA2-3	GMA2-3	GMA2-3	GMA2-4
Parameter	Date Collected:	10/27/03	04/15/02	10/16/02	04/25/03	10/23/03	04/17/02
Volatile Organics							
1,1,1,2-Tetrachlor		ND(0.0050)	ND(0.0050)	, ,	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,1-Trichloroetha		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,2,2-Tetrachlor	pethane	ND(0.0050)	ND(0.0050)	, ,	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,2-Trichloroetha		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1-Dichloroethane		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1-Dichloroethene		ND(0.0010)	ND(0.0010)	,	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,2,3-Trichloroprop		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dibromo-3-chlo		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dibromoethan		ND(0.0010)		ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,2-Dichloroethane		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dichloropropar	ne	ND(0.0050)	ND(0.0050)	, ,	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,4-Dioxane		ND(0.20) J	ND(0.20)	ND(0.200) J	\ /	ND(0.20) J	ND(0.20) J
2-Butanone		ND(0.010) J	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)
2-Chloro-1,3-butad		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
2-Chloroethylvinyle	ether	ND(0.0050)	ND(0.0050)	,	ND(0.0050) J	ND(0.0050)	ND(0.0050) J
2-Hexanone		ND(0.010)	ND(0.010)		ND(0.010)	ND(0.010)	ND(0.010)
3-Chloropropene		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
4-Methyl-2-pentan	one	ND(0.010)	ND(0.010)		ND(0.010)	ND(0.010)	ND(0.010)
Acetone		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010) J
Acetonitrile		ND(0.10) J	ND(0.10)	ND(0.100) J		ND(0.10) J	ND(0.10) J
Acrolein		ND(0.10)	ND(0.10)	ND(0.100) J	` '	ND(0.10)	ND(0.10) J
Acrylonitrile		ND(0.0050)	, ,	ND(0.0050) J	. ,	ND(0.0050)	ND(0.0050) J
Benzene		ND(0.0050)	ND(0.0050)	,	ND(0.0050)	ND(0.0050)	ND(0.0050)
Bromodichloromet	hane	ND(0.0050)	ND(0.0050)	,	ND(0.0050)	ND(0.0050)	ND(0.0050)
Bromoform		ND(0.0050)	ND(0.0050)	, ,	ND(0.0050)	ND(0.0050)	ND(0.0050)
Bromomethane		ND(0.0020)	ND(0.0020)	,	ND(0.0020)	ND(0.0020)	ND(0.0020)
Carbon Disulfide		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
Carbon Tetrachlor	ide	ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
Chlorobenzene		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
Chloroethane		ND(0.0050)	ND(0.0050)	,	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chloroform		0.0058	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
Chloromethane		ND(0.0050) J	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
cis-1,3-Dichloropro		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
Dibromochloromet	hane	ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
Dibromomethane		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
Dichlorodifluorome		ND(0.0050)	ND(0.0050)		ND(0.0050) J	ND(0.0050)	ND(0.0050)
Ethyl Methacrylate		ND(0.0050)	ND(0.0050)	,	ND(0.0050)	ND(0.0050)	ND(0.0050)
Ethylbenzene		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
Iodomethane		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
Isobutanol		ND(0.10) J	ND(0.10)	ND(0.10)	ND(0.10) J	ND(0.10) J	ND(0.10) J
Methacrylonitrile		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
Methyl Methacryla		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
Methylene Chlorid	e	ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
Propionitrile		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010) J
Styrene		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
Tetrachloroethene		0.0025	. ,	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)
Toluene		0.00090 J		ND(0.0050)	ND(0.0050)	0.00098 J	ND(0.0050)
trans-1,2-Dichloroe		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
trans-1,3-Dichloro		ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
trans-1,4-Dichloro-	·2-butene	ND(0.0050)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.0050)
Trichloroethene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Trichlorofluoromet	hane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Vinyl Acetate		ND(0.0050) J	ND(0.0050)		ND(0.0050)	ND(0.0050) J	ND(0.0050)
Vinyl Chloride		ND(0.0020)	ND(0.0020)		ND(0.0020)	ND(0.0020)	ND(0.0020)
Xylenes (total)		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Total VOCs		0.0092 J	ND(0.20)	ND(0.20)	ND(0.20)	0.00098 J	ND(0.20)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

_	Sample ID:	GMA2-2	GMA2-3	GMA2-3	GMA2-3	GMA2-3	GMA2-4
Parameter	Date Collected:	10/27/03	04/15/02	10/16/02	04/25/03	10/23/03	04/17/02
PCBs-Unfiltered							
Aroclor-1016		ND(0.000065)	NA	NA		ND(0.000065)	ND(0.000065)
Aroclor-1221		ND(0.000065)	NA	NA		ND(0.000065)	ND(0.000065)
Aroclor-1232		ND(0.000065)	NA	NA	ND(0.000065)		ND(0.000065)
Aroclor-1242		ND(0.000065)	NA	NA	ND(0.000065)	,	ND(0.000065)
Aroclor-1248		ND(0.000065)	NA	NA	ND(0.000065)	,	ND(0.000065)
Aroclor-1254		0.00025	NA	NA	0.00065	0.0010	ND(0.000065)
Aroclor-1260		ND(0.000065)	NA	NA	ND(0.000065)	,	ND(0.000065)
Total PCBs		0.00025	NA	NA	0.00065	0.0010	ND(0.000065)
PCBs-Filtered							
Aroclor-1016		ND(0.000065)	NA	NA	ND(0.000065)		ND(0.000065)
Aroclor-1221		ND(0.000065)	NA	NA	( /	ND(0.000065)	ND(0.000065)
Aroclor-1232		ND(0.000065)	NA	NA	ND(0.000065)	,	ND(0.000065)
Aroclor-1242		ND(0.000065)	NA	NA		ND(0.000065)	ND(0.000065)
Aroclor-1248		ND(0.000065)	NA	NA	ND(0.000065)		ND(0.000065)
Aroclor-1254		0.00018	NA	NA	0.00056	0.00071	ND(0.000065)
Aroclor-1260		ND(0.000065)	NA	NA	ND(0.000065)		ND(0.000065)
Total PCBs		0.00018	NA	NA	0.00056	0.00071	ND(0.000065)
Semivolatile Orga							
1,2,4,5-Tetrachloro		ND(0.010)	NA	NA	NA	NA	ND(0.010)
1,2,4-Trichlorobenz	zene	ND(0.010)	ND(0.0050)		0.00052 J	ND(0.0050)	ND(0.010)
1,2-Dichlorobenzer		ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)
1,2-Diphenylhydraz	zine	ND(0.010)	NA	NA	NA	NA	ND(0.010)
1,3,5-Trinitrobenze	ne	ND(0.010)	NA	NA	NA	NA	ND(0.010)
1,3-Dichlorobenzer	ne	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)
1,3-Dinitrobenzene		ND(0.010)	NA	NA	NA	NA	ND(0.010)
1,4-Dichlorobenzer	ne	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)
1,4-Naphthoquinon	e	ND(0.010)	NA	NA	NA	NA	ND(0.010)
1-Naphthylamine		ND(0.010)	NA	NA	NA	NA	ND(0.010)
2,3,4,6-Tetrachloro	phenol	ND(0.010)	NA	NA	NA	NA	ND(0.010) J
2,4,5-Trichloropher	nol	ND(0.010)	NA	NA	NA	NA	ND(0.010)
2,4,6-Trichloropher		ND(0.010)	NA	NA	NA	NA	ND(0.010)
2,4-Dichlorophenol		ND(0.010)	NA	NA	NA	NA	ND(0.010)
2,4-Dimethylpheno		ND(0.010)	NA	NA	NA	NA	ND(0.010)
2,4-Dinitrophenol		ND(0.050)	NA	NA	NA	NA	ND(0.050)
2,4-Dinitrotoluene		ND(0.010)	NA	NA	NA	NA	ND(0.010)
2,6-Dichlorophenol		ND(0.010)	NA	NA	NA	NA	ND(0.010)
2,6-Dinitrotoluene		ND(0.010)	NA	NA	NA	NA	ND(0.010)
2-Acetylaminofluor		ND(0.010)	NA	NA	NA	NA	ND(0.010)
2-Chloronaphthale	ne	ND(0.010)	NA	NA	NA	NA	ND(0.010)
2-Chlorophenol		ND(0.010)	NA	NA	NA	NA	ND(0.010)
2-Methylnaphthalei	ne	ND(0.010)	NA	NA	NA	NA	ND(0.010)
2-Methylphenol		ND(0.010)	NA	NA	NA	NA	ND(0.010)
2-Naphthylamine		ND(0.010)	NA	NA	NA	NA	ND(0.010)
2-Nitroaniline		ND(0.050)	NA	NA	NA	NA	ND(0.050)
2-Nitrophenol		ND(0.010)	NA	NA	NA	NA	ND(0.010)
2-Picoline		ND(0.010)	NA	NA	NA	NA	ND(0.010)
3&4-Methylphenol		ND(0.010)	NA	NA	NA	NA	ND(0.010)
3,3'-Dichlorobenzio		ND(0.020)	NA	NA	NA	NA	ND(0.020)
3,3'-Dimethylbenzio		ND(0.010)	NA	NA	NA	NA	ND(0.010)
3-Methylcholanthre	ne	ND(0.010)	NA	NA	NA	NA	ND(0.010)
3-Nitroaniline		ND(0.050)	NA	NA	NA	NA	ND(0.050)
4,6-Dinitro-2-methy	riphenol	ND(0.050)	NA	NA	NA	NA	ND(0.050)
4-Aminobiphenyl	1.1	ND(0.010)	NA	NA	NA	NA	ND(0.010)
4-Bromophenyl-phe		ND(0.010)	NA	NA	NA	NA	ND(0.010)
4-Chloro-3-Methylp	henol	ND(0.010)	NA	NA	NA	NA	ND(0.010)
4-Chloroaniline		ND(0.010)	NA	NA	NA	NA	ND(0.010)
4-Chlorobenzilate		ND(0.010)	NA	NA	NA	NA	ND(0.010) J
4-Chlorophenyl-pho	enylether	ND(0.010)	NA	NA	NA	NA	ND(0.010)
4-Nitroaniline		ND(0.050)	NA	NA	NA	NA	ND(0.050)
4-Nitrophenol		ND(0.050)	NA	NA	NA	NA	ND(0.050)
Semivolatile Orga	nics (continued)						
	-						

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-2 10/27/03	GMA2-3 04/15/02	GMA2-3 10/16/02	GMA2-3 04/25/03	GMA2-3 10/23/03	GMA2-4 04/17/02
-Nitroquinoline-1	oxide	ND(0.010) J	NA	NA	NA	NA	ND(0.010) J
-Phenylenediamir	ne	ND(0.010)	NA	NA	NA	NA	ND(0.010) J
-Nitro-o-toluidine		ND(0.010)	NA	NA	NA	NA	ND(0.010)
,12-Dimethylbenz	(a)anthracene	ND(0.010)	NA	NA	NA	NA	ND(0.010)
a,a'-Dimethylphene	ethylamine	ND(0.010)	NA	NA	NA	NA	ND(0.010)
Acenaphthene		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Acenaphthylene		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Acetophenone		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Aniline		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Anthracene		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Aramite		ND(0.010)	NA	NA	NA	NA	ND(0.010) J
Benzidine		ND(0.020)	NA	NA	NA	NA	ND(0.020)
Benzo(a)anthracer	ie	ND(0.010)	NA	NA	NA	NA	ND(0.010)
Benzo(a)pyrene		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Benzo(b)fluoranthe	ne .	ND(0.010)	NA.	NA NA	NA	NA NA	ND(0.010)
Benzo(g,h,i)perylei		ND(0.010)	NA NA	NA NA	NA NA	NA NA	ND(0.010)
Benzo(k)fluoranthe		ND(0.010)	NA NA	NA	NA NA	NA NA	ND(0.010)
Benzyl Alcohol	ile	ND(0.010)	NA NA	NA NA	NA NA	NA NA	ND(0.010)
ois(2-Chloroethoxy	mothana	ND(0.020)	NA NA	NA NA	NA NA	NA NA	ND(0.020)
ois(2-Chloroethyl)e		. ,	NA NA	NA NA	NA NA	NA NA	, ,
		ND(0.010)					ND(0.010)
ois(2-Chloroisopro	• •	ND(0.010)	NA	NA	NA	NA	ND(0.010)
ois(2-Ethylhexyl)ph		ND(0.0060)	NA	NA	NA	NA	ND(0.0060)
Butylbenzylphthala	te	ND(0.010)	NA	NA	NA	NA	ND(0.010)
Chrysene		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Diallate		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Dibenzo(a,h)anthra	acene	ND(0.010)	NA	NA	NA	NA	ND(0.010)
Dibenzofuran		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Diethylphthalate		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Dimethylphthalate		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Di-n-Butylphthalate		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Di-n-Octylphthalate	)	ND(0.010)	NA	NA	NA	NA	ND(0.010)
Diphenylamine		ND(0.010)	NA	NA	NA	NA	ND(0.010)
thyl Methanesulfo	onate	ND(0.010)	NA	NA	NA	NA	ND(0.010)
luoranthene		ND(0.010)	NA	NA	NA	NA	ND(0.010)
luorene		ND(0.010)	NA	NA	NA	NA	ND(0.010)
lexachlorobenzen	е	ND(0.010)	NA	NA	NA	NA	ND(0.010)
- lexachlorobutadie	ne	ND(0.0010)	NA	NA	NA	NA	ND(0.0010)
- lexachlorocyclope	entadiene	ND(0.010)	NA	NA	NA	NA	ND(0.010)
-lexachloroethane		ND(0.010)	NA	NA	NA	NA	ND(0.010)
lexachlorophene		ND(0.020) J	NA	NA	NA	NA	ND(0.020)
Hexachloropropen	Э	ND(0.010) J	NA	NA	NA	NA	ND(0.010) J
ndeno(1,2,3-cd)py		ND(0.010)	NA	NA	NA	NA	ND(0.010)
sodrin	10110	ND(0.010)	NA	NA	NA	NA NA	ND(0.010)
sophorone		ND(0.010)	NA	NA NA	NA	NA NA	ND(0.010)
sosafrole		ND(0.010)	NA	NA	NA	NA NA	ND(0.010)
Methapyrilene		ND(0.010)	NA NA	NA NA	NA NA	NA NA	ND(0.010)
Methyl Methanesul	fonato	ND(0.010)	NA	NA	NA NA	NA NA	ND(0.010)
Naphthalene	ionate	ND(0.010)	ND(0.0050)		ND(0.0050)	ND(0.0050)	ND(0.010)
Nitrobenzene		ND(0.010)	NA	NA	NA	NA NA	ND(0.010)
N-Nitrosodiethylam	vino	\ /	NA NA	NA NA	NA NA	NA NA	ND(0.010)
		ND(0.010)	NA NA	NA NA	NA NA		ND(0.010)
N-Nitrosodimethyla		ND(0.010)	1			NA	
N-Nitroso-di-n-buty		ND(0.010)	NA NA	NA	NA	NA	ND(0.010)
Nitroso-di-n-prop		ND(0.010)	NA	NA	NA	NA	ND(0.010)
N-Nitrosodiphenyla		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Nitrosomethyleth	,	ND(0.010)	NA	NA	NA	NA	ND(0.010)
N-Nitrosomorpholir		ND(0.010)	NA	NA	NA	NA	ND(0.010)
N-Nitrosopiperidine		ND(0.010)	NA	NA	NA	NA	ND(0.010)
N-Nitrosopyrrolidin		ND(0.010)	NA	NA	NA	NA	ND(0.010)
,o,o-Triethylphosp	horothioate	ND(0.010)	NA	NA	NA	NA	ND(0.010)
-Toluidine		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Semivolatile Orga	nics (continued)						
-Dimethylaminoaz	obenzene	ND(0.010)	NA	NA	NA	NA	ND(0.010)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-2 10/27/03	GMA2-3 04/15/02	GMA2-3 10/16/02	GMA2-3 04/25/03	GMA2-3 10/23/03	GMA2-4 04/17/02
Pentachlorobenze	ene	ND(0.010)	NA	NA	NA	NA	ND(0.010)
Pentachloroethan	ne	ND(0.010)	NA	NA	NA	NA	ND(0.010)
Pentachloronitrob	enzene	ND(0.010)	NA	NA	NA	NA	ND(0.010) J
Pentachlorophen	ol	ND(0.050)	NA	NA	NA	NA	ND(0.050)
Phenacetin		ND(0.010) J	NA	NA	NA	NA	ND(0.010)
Phenanthrene		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Phenol		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Pronamide		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Pyrene		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Pyridine		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Safrole		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Thionazin		ND(0.010)	NA	NA	NA	NA	ND(0.010)
Organochlorine	Pesticides						
4,4'-DDD		NA	NA	NA	NA	NA	ND(0.00010)
4,4'-DDE		NA	NA	NA	NA	NA	ND(0.00010)
4,4'-DDT		NA	NA	NA	NA	NA	ND(0.00010)
Aldrin		NA	NA	NA	NA	NA	ND(0.000050)
Alpha-BHC		NA	NA	NA	NA	NA	ND(0.000050)
Alpha-Chlordane		NA	NA	NA	NA	NA	ND(0.000050)
Beta-BHC		NA	NA	NA	NA	NA	ND(0.000050)
Delta-BHC		NA	NA	NA	NA	NA	ND(0.000050)
Dieldrin		NA	NA	NA	NA	NA	ND(0.00010)
Endosulfan I		NA	NA	NA	NA	NA	ND(0.00010)
Endosulfan II		NA	NA	NA	NA	NA	ND(0.00010)
Endosulfan Sulfat	te	NA	NA	NA	NA	NA	ND(0.00010)
Endrin		NA	NA	NA	NA	NA	ND(0.00010)
Endrin Aldehyde		NA	NA	NA	NA	NA	ND(0.00010)
Endrin Ketone		NA	NA	NA	NA	NA	ND(0.00010)
Gamma-BHC (Lir	/	NA	NA	NA	NA	NA	ND(0.000050)
Gamma-Chlordar	ne	NA	NA	NA	NA	NA	ND(0.000050)
Heptachlor		NA	NA	NA	NA	NA	ND(0.000050)
Heptachlor Epoxi	de	NA	NA	NA	NA	NA	ND(0.000050)
Kepone		NA	NA	NA	NA	NA	ND(0.050)
Methoxychlor		NA	NA	NA	NA	NA	ND(0.00050)
Technical Chlorda	ane	NA	NA	NA	NA	NA	ND(0.00050)
Toxaphene		NA	NA	NA	NA	NA	ND(0.0010)
Organophospha	te Pesticides						
Dimethoate		NA	NA	NA	NA	NA	ND(0.050)
Disulfoton		NA	NA	NA	NA	NA	ND(0.010)
Ethyl Parathion		NA	NA	NA	NA	NA	ND(0.010)
Famphur		NA	NA	NA	NA	NA	ND(0.050)
Methyl Parathion		NA NA	NA	NA	NA	NA	ND(0.010)
Phorate		NA NA	NA	NA	NA	NA	ND(0.010)
Sulfotep		NA NA	NA	NA	NA NA	NA NA	ND(0.010)
None Detected		IVA	NA	NA	INA	INA	
Herbicides		N1A	110	<b>.</b>	N10		ND(0.0000)
2,4,5-T		NA	NA	NA	NA	NA	ND(0.0020)
2,4,5-TP		NA	NA	NA	NA	NA	ND(0.0020)
2,4-D		NA	NA	NA	NA	NA	ND(0.010)
Dinoseb		NA	NA	NA	NA	NA	ND(0.0010)
None Detected		NA	NA	NA	NA	NA	
Furans							h .=
2,3,7,8-TCDF		ND(0.0000000038)		NA	NA	NA	ND(0.0000000017) X
TCDFs (total)		ND(0.0000000038)		NA	NA	NA	ND(0.0000000017) X
1,2,3,7,8-PeCDF		ND(0.0000000035)	NA	NA	NA	NA	ND(0.0000000060) X
2,3,4,7,8-PeCDF		ND(0.0000000037)	NA	NA	NA	NA	ND(0.0000000069) X
PeCDFs (total)		ND(0.0000000035	NA	NA	NA	NA	ND(0.000000013) X
1,2,3,4,7,8-HxCD		ND(0.0000000033)	NA	NA	NA	NA	0.0000000075 JB
1,2,3,6,7,8-HxCD		ND(0.0000000032)	NA	NA	NA	NA	0.0000000047 J
1,2,3,7,8,9-HxCD		ND(0.0000000042)	NA	NA	NA	NA	0.000000012 J
2,3,4,6,7,8-HxCD		ND(0.0000000037)	NA	NA	NA	NA	0.0000000073 J
HxCDFs (total)		ND(0.0000000032)	NA	NA	NA	NA	0.000000032

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-2 10/27/03	GMA2-3 04/15/02	GMA2-3 10/16/02	GMA2-3 04/25/03	GMA2-3 10/23/03	GMA2-4 04/17/02
1,2,3,4,6,7,8-HpCD		ND(0.0000000027)	NA	NA	NA	NA	ND(0.0000000045) X
1,2,3,4,7,8,9-HpCD	F	ND(0.0000000036)	NA	NA	NA	NA	0.0000000092 J
HpCDFs (total)		ND(0.0000000027)	NA	NA	NA	NA	0.0000000092
OCDF		ND(0.0000000074)	NA	NA	NA	NA	ND(0.000000015) X
Dioxins							
2,3,7,8-TCDD		ND(0.0000000042)	NA	NA	NA	NA	ND(0.0000000019) X
TCDDs (total)		ND(0.0000000042)	NA	NA	NA	NA	ND(0.0000000019) X
1,2,3,7,8-PeCDD		ND(0.0000000064)	NA	NA	NA	NA	0.0000000076 J
PeCDDs (total)		ND(0.0000000064)	NA	NA	NA	NA	0.0000000076
1,2,3,4,7,8-HxCDD		ND(0.0000000038)	NA	NA	NA	NA	0.0000000057 J
1,2,3,6,7,8-HxCDD		ND(0.0000000034)	NA	NA	NA	NA	0.0000000068 J
1,2,3,7,8,9-HxCDD		ND(0.0000000034)	NA	NA	NA	NA	0.000000012 J
HxCDDs (total)		ND(0.0000000034)	NA	NA	NA	NA	0.000000025
1,2,3,4,6,7,8-HpCD	D	ND(0.0000000044)	NA	NA	NA	NA	ND(0.0000000079) X
HpCDDs (total)		ND(0.0000000044)	NA	NA	NA	NA	ND(0.0000000079) X
OCDD		ND(0.0000000049)	NA	NA	NA	NA	ND(0.000000020)
Total TEQs (WHO T	EFs)	0.000000078	NA	NA	NA	NA	0.000000016
Inorganics-Unfilter	red						
Antimony		ND(0.0600)	NA	NA	NA	NA	ND(0.0600)
Arsenic		0.00470 J	NA	NA	NA	NA	ND(0.0100)
Barium		0.0480 B	NA	NA	NA	NA	ND(0.200)
Beryllium		ND(0.00100)	NA	NA	NA	NA	ND(0.00100)
Cadmium		ND(0.00500)	NA	NA	NA	NA	ND(0.00500)
Chromium		0.00120 B	NA	NA	NA	NA	ND(0.0100)
Cobalt		ND(0.0500)	NA	NA	NA	NA	ND(0.0500)
Copper		ND (0.025)	NA	NA	NA	NA	ND(0.0250)
Cyanide		ND(0.0100)	NA	NA	0.00290 B	0.00260 B	ND(0.0100)
Lead		ND(0.00300) J	NA	NA	NA	NA	ND(0.00300)
Mercury		ND(0.000200)	NA	NA	NA	NA	ND(0.000200) J
Nickel		0.00160 B	NA	NA	NA	NA	ND(0.0400)
Selenium		ND(0.00500) J	NA	NA	NA	NA	ND(0.00500)
Silver		ND(0.00500)	NA	NA	NA	NA	ND(0.00500)
Sulfide		ND(5.00)	NA	NA	NA	NA	ND(5.00)
Thallium		ND(0.0100)	NA	NA	NA	NA	ND(0.0100) J
Tin		ND(0.0300)	NA	NA	NA	NA	ND(0.0300)
Vanadium		ND(0.0500)	NA	NA	NA	NA	ND(0.0500)
Zinc		ND (0.020)	NA	NA	NA	NA	ND(0.0200)
Inorganics-Filtered	1	, ,				ı	<u> </u>
Antimony		ND(0.0600)	NA	NA	NA	NA	ND(0.0600)
Arsenic		ND(0.0100) J	NA	NA	NA	NA	ND(0.100)
Barium		0.0460 B	NA	NA	NA	NA	ND(0.200)
Beryllium		ND(0.00100)	NA	NA	NA	NA	ND(0.00100)
Cadmium		ND(0.00500)	NA	NA	NA	NA	ND(0.0100)
Chromium		ND(0.0100)	NA	NA	NA	NA	ND(0.0250)
Cobalt		ND(0.0500)	NA	NA	NA	NA	ND(0.0500)
Copper		ND(0.0250)	NA	NA	NA	NA	ND(0.100)
Cyanide		ND(0.0100)	NA	NA	0.00290 B	0.00220 B	NA NA
Lead		ND(0.00300) J	NA	NA	NA	NA	ND(0.00300)
Mercury		ND(0.000200)	NA	NA	NA	NA	ND(0.000200) J
Nickel		ND(0.0400)	NA	NA	NA NA	NA	ND(0.0400)
Selenium		ND(0.00500) J	NA	NA	NA NA	NA	ND(0.00500)
Silver		ND(0.00500)	NA	NA	NA NA	NA NA	ND(0.00500)
Thallium		ND(0.0100)	NA	NA NA	NA NA	NA	ND(0.0100) J
Tin		ND(0.0300)	NA	NA	NA NA	NA	ND(0.0300)
		. ,	NA		NA NA	NA NA	` '
		. ,					` '
Vanadium Zinc		ND(0.0500) ND(0.020)	NA NA	NA NA	NA NA	NA NA	ND(0.0500) ND(0.0200)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-4 11/05/02	GMA2-4 04/28/03	GMA2-4 10/28/03	GMA2-4 05/25/04	GMA2-4 11/04/05	GMA2-4 04/19/06
Volatile Organic	S						
1,1,1,2-Tetrachlo	roethane	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
1,1,1-Trichloroeth	nane	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
1,1,2,2-Tetrachlo	roethane	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
1,1,2-Trichloroeth	nane	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
1,1-Dichloroethan	ne	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
1,1-Dichloroether	ne	ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	NA	NA
1,2,3-Trichloropro	pane	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
1,2-Dibromo-3-ch	loropropane	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
1,2-Dibromoethar	ne	ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	NA	NA
1,2-Dichloroethar	ne	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
1,2-Dichloropropa	ane	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
1,4-Dioxane		ND(0.20)	ND(0.20)	ND(0.20) J	NA	NA	NA
2-Butanone		ND(0.010)	ND(0.010) J	ND(0.010) J	NA	NA	NA
2-Chloro-1,3-buta	ndiene	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
2-Chloroethylviny		ND(0.0050)	ND(0.0050) J	ND(0.0050)	NA	NA	NA
2-Hexanone	-	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
3-Chloropropene		ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA	NA NA
4-Methyl-2-pentar	none	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA
Acetone		ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA
Acetonitrile		ND(0.10) J	ND(0.10) J	ND(0.10) J	NA NA	NA NA	NA NA
Acrolein		ND(0.10) J	ND(0.10) J	ND(0.10) 3	NA NA	NA NA	NA NA
Acrylonitrile		ND(0.0050) J	ND(0.0050)	ND(0.0050)	NA NA	NA NA	NA NA
		ND(0.0050) 3	ND(0.0050)	ND(0.0050)	NA NA	NA NA	NA NA
Benzene	46-0-0	ND(0.0050)			NA NA	NA NA	NA NA
Bromodichlorome	etnane	( )	ND(0.0050)	ND(0.0050)			
Bromoform		ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA NA
Bromomethane		ND(0.0020)	ND(0.0020)	ND(0.0020)	NA	NA	NA
Carbon Disulfide		ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Carbon Tetrachlo	ride	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Chlorobenzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Chloroethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Chloroform		ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Chloromethane		ND(0.0050)	ND(0.0050)	ND(0.0050) J	NA	NA	NA
cis-1,3-Dichloropi	•	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Dibromochlorome		ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Dibromomethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Dichlorodifluorom	ethane	ND(0.0050)	ND(0.0050) J	ND(0.0050)	NA	NA	NA
Ethyl Methacrylat	e	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Ethylbenzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Iodomethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Isobutanol		ND(0.10) J	ND(0.10) J	ND(0.10) J	NA	NA	NA
Methacrylonitrile		ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Methyl Methacryla	ate	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Methylene Chloric		ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Propionitrile		ND(0.010) J	ND(0.010) J	ND(0.010)	NA	NA	NA
Styrene		ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
Tetrachloroethen	e	ND(0.0020)	ND(0.0020)	ND(0.0020)	NA	NA	NA
Toluene		ND(0.0050)	ND(0.0050)	0.0014 J	NA	NA	NA
trans-1,2-Dichlord	pethene	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA	NA	NA
trans-1,3-Dichlord		ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA	NA
trans-1,4-Dichlord	· ·	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA	NA NA
Trichloroethene	, _ buttile	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA	NA NA
Trichlorofluorome	thane	ND(0.0050)	ND(0.0050)	ND(0.0050)	NA NA	NA NA	NA NA
Vinyl Acetate	a lallo	ND(0.0050)	ND(0.0050)	ND(0.0050) J	NA NA	NA NA	NA NA
		ND(0.0050)	ND(0.0050)	ND(0.0050) 3 ND(0.0020)		NA NA	NA NA
Vinyl Chloride		ND(0.0020)	ND(0.0020) ND(0.010)	ND(0.0020) ND(0.010)	NA NA	NA NA	
Xylenes (total) Total VOCs		ND(0.010) ND(0.20)	ND(0.010) ND(0.20)	0.0014 J	NA NA		NA NA
TOTAL VOUS		ND(0.20)	ND(0.20)	0.0014 J	NA	NA	NA

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-4 11/05/02	GMA2-4 04/28/03	GMA2-4 10/28/03	GMA2-4 05/25/04	GMA2-4 11/04/05	GMA2-4 04/19/06
PCBs-Unfiltered					•		
Aroclor-1016		ND(0.000065)	ND(0.000065)	ND(0.000065)	NA	NA	NA
Aroclor-1221		ND(0.000065)	ND(0.000065)	ND(0.000065)	NA	NA	NA
Aroclor-1232		ND(0.000065)	ND(0.000065)	ND(0.000065)	NA	NA	NA
Aroclor-1242		ND(0.000065)	ND(0.000065)	ND(0.000065)	NA	NA	NA
Aroclor-1248		ND(0.000065)	ND(0.000065)	ND(0.000065)	NA	NA	NA
Aroclor-1254		0.0018	0.00010	0.00052	NA	NA	NA
Aroclor-1260		0.0017	ND(0.000065)	ND(0.000065)	NA	NA	NA
Total PCBs		0.0035	0.00010	0.00052	NA	NA	NA
PCBs-Filtered							
Aroclor-1016		ND(0.000065) J	ND(0.000065)	ND(0.000065)		ND(0.000065)	
Aroclor-1221		ND(0.000065) J	ND(0.000065)	ND(0.000065)		ND(0.000065)	
Aroclor-1232		ND(0.000065) J	ND(0.000065)	ND(0.000065)		ND(0.000065)	
Aroclor-1242		ND(0.000065) J	ND(0.000065)	ND(0.000065)		ND(0.000065)	
Aroclor-1248		ND(0.000065) J	ND(0.000065)	ND(0.000065)		ND(0.000065)	
Aroclor-1254		ND(0.000065) J	0.000091	0.00032	ND(0.000065		ND(0.00085)
Aroclor-1260		ND(0.000065) J	ND(0.000065)	ND(0.000065)		ND(0.000065)	. ,
Total PCBs		ND(0.000065) J	0.000091	0.00032	ND(0.000065	0.00039	ND(0.00085)
Semivolatile Or							
1,2,4,5-Tetrachlo		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
1,2,4-Trichlorobe	nzene	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
1,2-Dichlorobenz		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
1,2-Diphenylhydr	azine	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
1,3,5-Trinitroben:	zene	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
1,3-Dichlorobenz	ene	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
1,3-Dinitrobenze	ne	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
1,4-Dichlorobenz	ene	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
1,4-Naphthoquin	one	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
1-Naphthylamine		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
2,3,4,6-Tetrachlo	rophenol	ND(0.010)	R	ND(0.010)	NA	NA	NA
2,4,5-Trichloroph		ND(0.010)	R	ND(0.010)	NA	NA	NA
2,4,6-Trichloroph		ND(0.010)	R	ND(0.010)	NA	NA	NA
2,4-Dichloropher	ol	ND(0.010)	R	ND(0.010)	NA	NA	NA
2,4-Dimethylphei	nol	ND(0.010)	R	ND(0.010)	NA	NA	NA
2,4-Dinitropheno		ND(0.050)	R	ND(0.050)	NA	NA	NA
2,4-Dinitrotoluen	Э	ND(0.010)	ND(0.010) J	ND(0.010)	NA	NA	NA
2,6-Dichloropher		ND(0.010)	R	ND(0.010)	NA	NA	NA
2,6-Dinitrotoluen	е	ND(0.010)	ND(0.010) J	ND(0.010)	NA	NA	NA
2-Acetylaminoflu		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
2-Chloronaphtha	lene	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
2-Chlorophenol		ND(0.010)	R	ND(0.010)	NA	NA	NA
2-Methylnaphtha	lene	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
2-Methylphenol		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
2-Naphthylamine		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
2-Nitroaniline		ND(0.050) J	ND(0.050) J	ND(0.050)	NA	NA	NA
2-Nitrophenol		ND(0.010)	R	ND(0.010)	NA	NA	NA
2-Picoline		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
3&4-Methylphen		ND(0.010)	R	ND(0.010)	NA	NA	NA
3,3'-Dichlorobenz		ND(0.020)	ND(0.020) J	ND(0.020)	NA	NA	NA
3,3'-Dimethylben		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
3-Methylcholanth	rene	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
3-Nitroaniline		ND(0.050)	ND(0.050) J	ND(0.050)	NA	NA	NA
4,6-Dinitro-2-met		ND(0.050)	R	ND(0.050)	NA	NA	NA
4-Aminobiphenyl		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
4-Bromophenyl-p		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
4-Chloro-3-Methy	/Iphenol	ND(0.010)	R	ND(0.010)	NA	NA	NA
4-Chloroaniline		ND(0.010)	ND(0.010) J	ND(0.010)	NA	NA	NA
4-Chlorobenzilate		ND(0.010)	ND(0.010) J	ND(0.010)	NA	NA	NA
4-Chlorophenyl-p	henylether	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
4-Nitroaniline		ND(0.050)	ND(0.050) J	ND(0.050)	NA	NA	NA
4-Nitrophenol		ND(0.050)	R	ND(0.050)	NA	NA	NA
Semivolatile Or	ganics (continued)						

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-4 11/05/02	GMA2-4 04/28/03	GMA2-4 10/28/03	GMA2-4 05/25/04	GMA2-4 11/04/05	GMA2-4 04/19/06
4-Nitroquinoline-1	-oxide	ND(0.010)	ND(0.010)	ND(0.010) J	NA	NA	NA
4-Phenylenediam		ND(0.010) J	ND(0.010) J	ND(0.010)	NA	NA	NA
5-Nitro-o-toluidine		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
7,12-Dimethylben		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
a,a'-Dimethylphen	ethylamine	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Acenaphthene		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Acenaphthylene		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Acetophenone		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Aniline		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Anthracene		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Aramite		ND(0.010) J	ND(0.010) J	ND(0.010)	NA	NA	NA
Benzidine		ND(0.020)	ND(0.020)	ND(0.020)	NA	NA	NA
Benzo(a)anthrace	ne	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Benzo(a)pyrene		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA NA	NA
Benzo(b)fluoranth		ND(0.010)	ND(0.010) ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA
Benzo(g,h,i)peryle		ND(0.010)		ND(0.010)	NA NA	NA NA	NA NA
Benzo(k)fluoranth	ene	ND(0.010)	ND(0.010)	ND(0.010)			
Benzyl Alcohol	v)mothano	ND(0.020) ND(0.010)	R ND(0.010)	ND(0.020) ND(0.010)	NA NA	NA NA	NA NA
bis(2-Chloroethox bis(2-Chloroethyl)		ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	NA NA	NA NA	NA NA
bis(2-Chloroethyl)		ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	NA NA	NA NA	NA NA
bis(2-Ethylhexyl)p		ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA
Butylbenzylphthal		ND(0.000)	ND(0.0000) 3	ND(0.000)	NA NA	NA NA	NA NA
Chrysene	alt	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA
Diallate		ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA
Dibenzo(a,h)anthr	racono	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA
Dibenzofuran	acene	ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA	NA
Diethylphthalate		ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA	NA
Dimethylphthalate		ND(0.010)	ND(0.010)	ND(0.010)	NA NA	NA NA	NA
Di-n-Butylphthalat		ND(0.010)	ND(0.010)	ND(0.010)	NA.	NA NA	NA NA
Di-n-Octylphthalat		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Diphenylamine		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Ethyl Methanesulf	onate	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Fluoranthene		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Fluorene		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Hexachlorobenze	ne	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Hexachlorobutadi	ene	ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	NA	NA
Hexachlorocyclop	entadiene	ND(0.010) J	ND(0.010)	ND(0.010)	NA	NA	NA
Hexachloroethane	)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Hexachlorophene		ND(0.020) J	ND(0.020)	ND(0.020) J	NA	NA	NA
Hexachloroproper	ne	ND(0.010) J	ND(0.010) J	ND(0.010) J	NA	NA	NA
Indeno(1,2,3-cd)p	yrene	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Isodrin		ND(0.010)	ND(0.010) J	ND(0.010)	NA	NA	NA
Isophorone		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Isosafrole		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Methapyrilene		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Methyl Methanesu	ılfonate	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Naphthalene		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Nitrobenzene		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
N-Nitrosodiethylar		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
N-Nitrosodimethyl		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
N-Nitroso-di-n-but		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
N-Nitroso-di-n-pro	1 /	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
N-Nitrosodiphenyl		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
N-Nitrosomethylet	•	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
N-Nitrosomorphol		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
N-Nitrosopiperidin		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA NA	NA
N-Nitrosopyrrolidii		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
o,o,o-Triethylphos	pnorotnioate	ND(0.010) J	ND(0.010)	ND(0.010)	NA	NA	NA
o-Toluidine	anics (continued)	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

	Sample ID:	GMA2-4	GMA2-4	GMA2-4	GMA2-4	GMA2-4	GMA2-4
Parameter	Date Collected:	11/05/02	04/28/03	10/28/03	05/25/04	11/04/05	04/19/06
Pentachlorobenz	ene	ND(0.010)	ND(0.010) J	ND(0.010)	NA	NA	NA
Pentachloroetha	ne	ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Pentachloronitro		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Pentachloropher	nol	ND(0.050)	R	ND(0.050)	NA	NA	NA
Phenacetin		ND(0.010)	ND(0.010)	ND(0.010) J	NA	NA	NA
Phenanthrene		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Phenol		ND(0.010)	R	ND(0.010)	NA	NA	NA
Pronamide		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Pyrene		ND(0.010)	ND(0.010) J	ND(0.010)	NA	NA	NA
Pyridine		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Safrole		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Thionazin		ND(0.010)	ND(0.010)	ND(0.010)	NA	NA	NA
Organochlorine	Pesticides						
4,4'-DDD		ND(0.00010)	ND(0.00010)	NA	NA	NA	NA
4,4'-DDE		ND(0.00010)	ND(0.00010)	NA	NA	NA	NA
4,4'-DDT		ND(0.00010)	ND(0.00010)	NA	NA	NA	NA
Aldrin		ND(0.000050)	ND(0.000050)	NA	NA	NA	NA
Alpha-BHC		ND(0.000050)	ND(0.000050)	NA	NA	NA	NA
Alpha-Chlordane		ND(0.000050)	ND(0.000050)	NA	NA	NA	NA
Beta-BHC		ND(0.000050)	ND(0.000050)	NA	NA	NA	NA
Delta-BHC		ND(0.000050)	ND(0.000050)	NA	NA	NA	NA
Dieldrin		ND(0.00010)	ND(0.00010)	NA	NA	NA	NA
Endosulfan I		ND(0.00010)	ND(0.00010)	NA	NA	NA	NA
Endosulfan II		ND(0.00010)	ND(0.00010)	NA	NA	NA	NA
Endosulfan Sulfa	ate	ND(0.00010)	ND(0.00010)	NA	NA	NA	NA
Endrin		ND(0.00010)	ND(0.00010)	NA	NA	NA	NA
Endrin Aldehyde		ND(0.00010)	ND(0.00010)	NA	NA	NA	NA
Endrin Ketone		ND(0.00010)	ND(0.00010)	NA	NA	NA	NA
Gamma-BHC (Li	ndane)	ND(0.000050)	ND(0.000050)	NA	NA	NA	NA
Gamma-Chlorda	ne	ND(0.000050)	ND(0.000050)	NA	NA	NA	NA
Heptachlor		ND(0.000050)	ND(0.000050)	NA	NA	NA	NA
Heptachlor Epox	ide	ND(0.000050)	ND(0.000050)	NA	NA	NA	NA
Kepone		ND(0.050)	ND(0.050)	NA	NA	NA	NA
Methoxychlor		ND(0.00050)	ND(0.00050)	NA	NA	NA	NA
Technical Chlord	lane	ND(0.00050)	ND(0.00050)	NA	NA	NA	NA
Toxaphene		ND(0.0010)	ND(0.0010)	NA	NA	NA	NA
Organophospha	ate Pesticides	, ,	,				
Dimethoate		ND(0.050)	ND(0.050)	NA	NA	NA	NA
Disulfoton		ND(0.010)	ND(0.010)	NA NA	NA	NA	NA
Ethyl Parathion		ND(0.010)	ND(0.010)	NA	NA	NA	NA
Famphur		ND(0.050)	ND(0.050)	NA	NA	NA	NA
Methyl Parathion	1	ND(0.010)	ND(0.010)	NA	NA	NA	NA
Phorate	•	ND(0.010)	ND(0.010)	NA	NA	NA	NA
Sulfotep		ND(0.010)	ND(0.010)	NA	NA	NA	NA
None Detected				NA NA	NA	NA	NA
Herbicides							
2,4,5-T		ND(0.0020)	ND(0.0020)	NA	NA	NA	NA
2,4,5-1 2.4.5-TP		ND(0.0020)	ND(0.0020)	NA NA	NA NA	NA NA	NA NA
2,4,5-17 2,4-D		ND(0.0020)	ND(0.0020)	NA NA	NA NA	NA NA	NA NA
Dinoseb		ND(0.0010)	ND(0.0010)	NA NA	NA NA	NA NA	NA NA
None Detected		ND(0.0010)	ND(0.0010)	NA NA	NA NA	NA NA	NA NA
Furans				14/7	14/7	14/7	INA
2,3,7,8-TCDF		ND(0.0000000015)	ND(0 0000000077	ND(0 0000000000	NA	I NIA	NA
TCDFs (total)		ND(0.0000000015)			NA NA	NA NA	NA NA
. ,	<u> </u>	ND(0.0000000015) ND(0.000000000015)					
1,2,3,7,8-PeCDF		(	(	( ,	NA	NA NA	NA NA
2,3,4,7,8-PeCDF	•	ND(0.0000000025)			NA	NA NA	NA NA
PeCDFs (total)	NE .	. ,		ND(0.0000000042)	NA	NA	NA
1,2,3,4,7,8-HxC[				ND(0.000000083) X		NA NA	NA NA
1,2,3,6,7,8-HxC[		(		ND(0.0000000037)	NA	NA	NA NA
1,2,3,7,8,9-HxC[		. ,		ND(0.0000000049)	NA	NA	NA
2,3,4,6,7,8-HxC[	JF			ND(0.0000000042)	NA	NA	NA
HxCDFs (total)		ND(0.0000000025)	טטטטטטטטטט) טאן	ND(0.0000000037)	NA	NA	NA

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-4 11/05/02	GMA2-4 04/28/03	GMA2-4 10/28/03	GMA2-4 05/25/04	GMA2-4 11/04/05	GMA2-4 04/19/06
1,2,3,4,6,7,8-HpCI	DF	ND(0.0000000013) X	ND(0.0000000030	ND(0.0000000025)	NA	NA	NA
1,2,3,4,7,8,9-HpCI		ND(0.0000000025)	ND(0.0000000040	ND(0.0000000033)	NA	NA	NA
HpCDFs (total)		ND(0.0000000025)	ND(0.0000000035	ND(0.0000000025)	NA	NA	NA
OCDF		ND(0.000000050)	ND(0.0000000096	ND(0.0000000047)	NA	NA	NA
Dioxins			<u> </u>				
2,3,7,8-TCDD		ND(0.0000000020)	ND(0.0000000080	ND(0.0000000043)	NA	NA	NA
TCDDs (total)		ND(0.0000000020)	ND(0.000000011)	ND(0.0000000043)	NA	NA	NA
1,2,3,7,8-PeCDD		ND(0.0000000025)	ND(0.0000000058	ND(0.0000000062)	NA	NA	NA
PeCDDs (total)		ND(0.0000000025)	ND(0.0000000058	ND(0.0000000062)	NA	NA	NA
1,2,3,4,7,8-HxCDI	)	ND(0.0000000025)	ND(0.0000000051	ND(0.000000012)	NA	NA	NA
1,2,3,6,7,8-HxCDI				ND(0.000000010)	NA	NA	NA
1,2,3,7,8,9-HxCDI				ND(0.000000011)	NA	NA	NA
HxCDDs (total)		. ,		ND(0.000000010)	NA	NA	NA
1,2,3,4,6,7,8-HpCI	DD	0.0000000033 J		ND(0.0000000048)	NA	NA	NA
HpCDDs (total)		0.000000033		ND(0.0000000048)	NA	NA	NA
OCDD		0.000000013 J	ND(0.000000017)		NA	NA	NA
Total TEQs (WHO	TEFs)	0.0000000039	0.0000000095	0.000000013	NA	NA	NA
Inorganics-Unfilt	,			0.00000000			
Antimony	J. 04	ND(0.0600)	ND(0.0600)	ND(0.0600)	NA	NA	NA
Arsenic		ND(0.0000)	ND(0.0000)	ND(0.0100) J	NA NA	NA NA	NA NA
Barium		0.0240 B	0.0220 B	0.0360 B	NA NA	NA NA	NA NA
Bervllium		ND(0.00100)	ND(0.00100)	ND(0.00100)	NA NA	NA NA	NA
Cadmium		ND(0.00500)	ND(0.00100)	ND(0.00500)	NA NA	NA NA	NA NA
Chromium		ND(0.00300)	ND(0.00300)	ND(0.0100)	NA NA	NA NA	NA NA
Cobalt		ND(0.0500)	ND(0.0500)	ND(0.0500)	NA	NA NA	NA
Copper		ND(0.0300)	ND(0.0350)	ND (0.025)	NA NA	NA NA	NA
Cyanide		0.00300 B	ND(0.020)	ND(0.0100)	NA NA	NA NA	NA NA
Lead		ND(0.00300)	ND(0.00300) J	ND(0.00300) J	NA	NA NA	NA
Mercury		ND(0.00360)	ND(0.00300) 3	ND(0.00300) 3	NA NA	NA NA	NA NA
Nickel		ND(0.0400)	ND(0.0400)	ND(0.0400)	NA	NA NA	NA NA
Selenium		ND(0.00500)	ND(0.00500) J	ND(0.00500) J	NA	NA	NA NA
Silver		ND(0.00500)	ND(0.00500) 3	ND(0.00500)	NA NA	NA NA	NA NA
Sulfide		ND(5.00)	ND(5.00)	ND(5.00)	NA NA	NA NA	NA NA
Thallium		ND(0.0100) J	ND(0.0100)	ND(0.0100)	NA	NA NA	NA
Tin		ND(0.0300)	0.0120 B	ND(0.0300)	NA NA	NA NA	NA
Vanadium		ND(0.0500)	ND(0.0500)	ND(0.0500)	NA NA	NA NA	NA
Zinc		0.0140 B	ND(0.020)	ND (0.020)	NA NA	NA NA	NA NA
Inorganics-Filtere	nd .	0.0140 D	14D(0.020)	ND (0.020)	INA	IVA	IVA
	eu .	ND(0.0000)	ND(0.0000)	0.0400 D	NIA	NΙΔ	NΙΔ
Antimony		ND(0.0600)	ND(0.0600)	0.0100 B	NA	NA NA	NA
Arsenic		ND(0.0100) J 0.0220 B	ND(0.0100)	ND(0.0100) J	NA	NA NA	NA
Barium			0.0210 B	0.0320 B	NA NA	NA NA	NA NA
Beryllium		ND(0.00100)	0.000360 B	ND(0.00100)		NA	
Cadmium		ND(0.00500)	ND(0.00500)	ND(0.00500)	NA	NA	NA
Chromium		ND(0.0100)	ND(0.0100)	0.00210 B	NA	NA	NA
Cobalt		ND(0.0500)	ND(0.0500)	ND(0.0500)	NA	NA	NA
Copper		ND(0.0250)	ND(0.025)	0.0130 B	NA	NA	NA
Cyanide		ND(0.0100)	ND(0.0100)	ND(0.0100)	NA NA	NA NA	NA
Lead		ND(0.00300)	ND(0.00300) J	ND(0.00300) J	NA	NA	NA
Mercury		0.000200	ND(0.000200)	ND(0.000200)	NA	NA	NA
Nickel		ND(0.0400)	ND(0.0400)	0.00200 B	NA	NA	NA
Selenium		ND(0.00500)	ND(0.00500) J	ND(0.00500) J	NA	NA	NA
Silver		ND(0.00500)	ND(0.00500)	ND(0.00500)	NA	NA	NA
Thallium		ND(0.0100) J	ND(0.0100)	ND(0.0100)	NA	NA	NA
Tin		ND(0.0300)	ND(0.0300)	ND(0.0300)	NA	NA	NA
Vanadium		ND(0.0500)	ND(0.0500)	ND(0.0500)	NA	NA	NA
Zinc		0.00420 J	ND(0.020)	0.0650 J	NA	NA	NA

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-5 04/17/02	GMA2-5 11/04/02	GMA2-5 04/28/03	GMA2-5 10/28/03	GMA2-6 04/15/02
Volatile Organic	S					
1,1,1,2-Tetrachlo		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,1-Trichloroeth	nane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,2,2-Tetrachlo	roethane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,2-Trichloroeth	nane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1-Dichloroethar	ne	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1-Dichloroether	ne	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,2,3-Trichloropro	pane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dibromo-3-ch	loropropane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dibromoethar	ne	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,2-Dichloroethar	ne	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dichloropropa	ane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,4-Dioxane		ND(0.20) J	ND(0.20) J	ND(0.20)	ND(0.20) J	ND(0.20)
2-Butanone		ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010) J	ND(0.010)
2-Chloro-1,3-buta	adiene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
2-Chloroethylviny		ND(0.0050) J	ND(0.0050) J	ND(0.0050) J	ND(0.0050)	ND(0.0050)
2-Hexanone		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
3-Chloropropene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
4-Methyl-2-penta	none	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Acetone		ND(0.010) J	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Acetonitrile		ND(0.10) J	ND(0.10) J	ND(0.10) J	ND(0.10) J	ND(0.10)
Acrolein		ND(0.10) J	ND(0.10) J	ND(0.10) J	ND(0.10)	ND(0.10)
Acrylonitrile		ND(0.0050) J	ND(0.0050) J	ND(0.0050)	ND(0.0050)	ND(0.0050)
Benzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Bromodichlorome	ethane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Bromoform	71110110	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Bromomethane		ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)
Carbon Disulfide		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Carbon Tetrachlo	ride	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chlorobenzene	muo	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chloroethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chloroform		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chloromethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) J	ND(0.0050)
cis-1,3-Dichlorop	ronene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Dibromochlorome		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Dibromomethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Dichlorodifluorom		ND(0.0050)	ND(0.0050)	ND(0.0050) J	ND(0.0050)	ND(0.0050)
Ethyl Methacrylat		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Ethylbenzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Iodomethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Isobutanol		ND(0.10) J	ND(0.10) J	ND(0.10) J	ND(0.10) J	ND(0.10)
Methacrylonitrile		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Methyl Methacryl	ate	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Methylene Chloric		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Propionitrile		ND(0.010) J	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
Styrene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Tetrachloroethen	e	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)
Toluene	-	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
trans-1,2-Dichlord	pethene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
trans-1,3-Dichlor		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
trans-1,4-Dichlor		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Trichloroethene	2 2 3 3 10 1 10	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Trichlorofluorome	ethane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Vinyl Acetate		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) J	ND(0.0050)
Vinyl Chloride		ND(0.0030)	ND(0.0030)	ND(0.0030)	ND(0.0030) 3	ND(0.0030)
Xylenes (total)		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Total VOCs		ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)
13141 7303		140(0.20)	140(0.20)	140(0.20)	140(0.20)	145(0.20)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-5 04/17/02	GMA2-5 11/04/02	GMA2-5 04/28/03	GMA2-5 10/28/03	GMA2-6 04/15/02
PCBs-Unfiltered		04/11/02	11/04/02	04/20/00	10/20/00	04/10/02
Aroclor-1016	<u> </u>	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1221		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1232		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1242		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1248		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1254		0.000035 J	ND(0.000065)	0.000028 J	0.000049 J	ND(0.000065)
Aroclor-1260		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Total PCBs		0.000035 J	ND(0.000065)	0.000028 J	0.000049 J	ND(0.000065)
PCBs-Filtered						
Aroclor-1016		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1221		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1232		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1242		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1248		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1254		ND(0.000065)	ND(0.000065)	0.000026 J	0.000018 J	ND(0.000065)
Aroclor-1260		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Total PCBs		ND(0.000065)	ND(0.000065)	0.000026 J	0.000018 J	ND(0.000065)
Semivolatile Or		ND (0.040)	ND(0.040)	ND(0.040)	NID (0.040)	ND (0.040)
1,2,4,5-Tetrachlo		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1,2,4-Trichlorobe		ND(0.010)	ND(0.010) ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1,2-Dichlorobenz		ND(0.010)	\ /	ND(0.010)	ND(0.010)	ND(0.010) ND(0.010)
1,2-Diphenylhydi 1,3,5-Trinitroben		ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)
1,3,5-1 mitroben		ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)
1,3-Dichlorobenze		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1,4-Dichlorobenz		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1,4-Naphthoguin		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1-Naphthylamine		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,3,4,6-Tetrachlo		ND(0.010) J	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,4,5-Trichloroph		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,4,6-Trichloroph		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,4-Dichloropher	nol	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,4-Dimethylphe	nol	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,4-Dinitropheno	1	ND(0.050)	ND(0.050)	ND(0.050) J	ND(0.050)	ND(0.050)
2,4-Dinitrotoluen	е	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
2,6-Dichloropher		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,6-Dinitrotoluen		ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
2-Acetylaminoflu		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2-Chloronaphtha	lene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2-Chlorophenol		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2-Methylnaphtha	lene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2-Methylphenol		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2-Naphthylamine	)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2-Nitroaniline		ND(0.050) ND(0.010)	ND(0.050)	ND(0.050) J	ND(0.050)	ND(0.050) ND(0.010)
2-Nitrophenol			ND(0.010)	ND(0.010)	ND(0.010)	
2-Picoline 3&4-Methylphen	ol	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)
3,3'-Dichloroben		ND(0.010) ND(0.020)	ND(0.010) ND(0.020)	ND(0.010) ND(0.020) J	ND(0.010) ND(0.020)	ND(0.010) ND(0.020)
3,3'-Dimethylben		ND(0.020)	ND(0.020)	ND(0.010)	ND(0.020)	ND(0.020)
3-Methylcholanth		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
3-Nitroaniline		ND(0.050)	ND(0.050)	ND(0.050) J	ND(0.050)	ND(0.050)
4,6-Dinitro-2-met	thylphenol	ND(0.050)	ND(0.050)	ND(0.050) J	ND(0.050)	ND(0.050)
4-Aminobiphenyl		ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)	ND(0.010)
4-Bromophenyl-p		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
4-Chloro-3-Meth		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
4-Chloroaniline		ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
4-Chlorobenzilate	e	ND(0.010) J	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
4-Chlorophenyl-p	ohenylether	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
4-Nitroaniline		ND(0.050)	ND(0.050)	ND(0.050) J	ND(0.050)	ND(0.050)
4-Nitrophenol		ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Semivolatile Or	ganics (continued)					

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Sample ID: Parameter Date Collected:	GMA2-5 04/17/02	GMA2-5 11/04/02	GMA2-5 04/28/03	GMA2-5 10/28/03	GMA2-6 04/15/02
4-Nitroquinoline-1-oxide	ND(0.010) J	ND(0.010) J	ND(0.010)	ND(0.010) J	ND(0.010)
4-Phenylenediamine	ND(0.010) J	ND(0.010) J	ND(0.010) J	ND(0.010)	ND(0.010)
5-Nitro-o-toluidine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
7,12-Dimethylbenz(a)anthracene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
a,a'-Dimethylphenethylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Acenaphthene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Acenaphthylene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Acetophenone	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Aniline	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Anthracene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Aramite	ND(0.010) J	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
Benzidine	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)
Benzo(a)anthracene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Benzo(a)pyrene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Benzo(b)fluoranthene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Benzo(g,h,i)perylene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Benzo(k)fluoranthene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Benzyl Alcohol	ND(0.020)	ND(0.020) J	ND(0.020) J	ND(0.020)	ND(0.020)
bis(2-Chloroethoxy)methane	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
bis(2-Chloroethyl)ether	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
bis(2-Chloroisopropyl)ether	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
bis(2-Ethylhexyl)phthalate	ND(0.0060)	ND(0.0060)	ND(0.0060) J	ND(0.0060)	ND(0.0060)
Butylbenzylphthalate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Chrysene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Diallate Diallate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Dibenzo(a,h)anthracene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Dibenzofuran	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Diethylphthalate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Dimethylphthalate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Di-n-Butylphthalate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)
Di-n-Octylphthalate	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010)	ND(0.010)
Diphenylamine Ethyl Methanesulfonate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010) ND(0.010)
Fluoranthene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Fluorene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Hexachlorobenzene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Hexachlorobutadiene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Hexachlorocyclopentadiene	ND(0.0010)	ND(0.010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
Hexachloroethane	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Hexachlorophene	ND(0.020)	ND(0.020) J	ND(0.020)	ND(0.020) J	ND(0.020)
Hexachloropropene	ND(0.010) J	ND(0.010)	ND(0.010) J	ND(0.010) J	ND(0.010)
Indeno(1,2,3-cd)pyrene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Isodrin	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
Isophorone	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Isosafrole	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Methapyrilene	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)	ND(0.010)
Methyl Methanesulfonate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Naphthalene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Nitrobenzene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosodiethylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosodimethylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitroso-di-n-butylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitroso-di-n-propylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosodiphenylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosomethylethylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosomorpholine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosopiperidine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosopyrrolidine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
o,o,o-Triethylphosphorothioate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
o-Toluidine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Semivolatile Organics (continued)					
	ND(0.010)		ND(0.010)	ND(0.010)	ND(0.010)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-5 04/17/02	GMA2-5 11/04/02	GMA2-5 04/28/03	GMA2-5 10/28/03	GMA2-6 04/15/02
Pentachlorobenz	ene	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
Pentachloroethar		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Pentachloronitrol	enzene	ND(0.010) J	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Pentachlorophen	ol	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Phenacetin		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)
Phenanthrene		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Phenol		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Pronamide		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Pyrene		ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
Pyridine		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Safrole		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Thionazin		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Organochlorine	Pesticides	•	•	•	•	•
4,4'-DDD		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	ND(0.00010)
4,4'-DDE		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	ND(0.00010)
4,4'-DDT		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	ND(0.00010)
Aldrin		ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	ND(0.000050)
Alpha-BHC		ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	ND(0.000050)
Alpha-Chlordane		ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	ND(0.000050)
Beta-BHC		ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	ND(0.000050)
Delta-BHC		ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	ND(0.000050)
Dieldrin		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	ND(0.00010)
Endosulfan I		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	ND(0.00010)
Endosulfan II		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	ND(0.00010)
Endosulfan Sulfa	te	ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	ND(0.00010)
Endrin		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	ND(0.00010)
Endrin Aldehyde		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	ND(0.00010)
Endrin Ketone		ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	ND(0.00010)
Gamma-BHC (Li	ndane)	ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	ND(0.000050)
Gamma-Chlorda	/	ND(0.000050)	ND(0.00050)	ND(0.000050)	NA NA	ND(0.000050)
Heptachlor		ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	ND(0.000050)
Heptachlor Epoxi	de	ND(0.000050)	ND(0.000050)	ND(0.000050)	NA	ND(0.000050)
Kepone		ND(0.050)	ND(0.050)	ND(0.050)	NA	ND(0.050)
Methoxychlor		ND(0.00050)	ND(0.00050)	ND(0.00050)	NA	ND(0.00050)
Technical Chlord	ane	ND(0.00050)	ND(0.00050)	ND(0.00050)	NA	ND(0.00050)
Toxaphene		ND(0.0010)	ND(0.0010)	ND(0.0010)	NA	ND(0.0010)
Organophospha	te Pesticides	( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (	(5.55.5)	(5.55.5)		(3.33.3)
Dimethoate		ND(0.050)	ND(0.050)	ND(0.050)	NA	ND(0.050)
Disulfoton		ND(0.010)	ND(0.010)	ND(0.010)	NA NA	ND(0.010)
Ethyl Parathion		ND(0.010)	ND(0.010)	ND(0.010)	NA NA	ND(0.010)
Famphur		ND(0.050)	ND(0.050)	ND(0.050)	NA	ND(0.050)
Methyl Parathion		ND(0.010)	ND(0.010)	ND(0.010)	NA NA	ND(0.010)
Phorate		ND(0.010)	ND(0.010)	ND(0.010)	NA NA	ND(0.010)
Sulfotep		ND(0.010)	ND(0.010)	ND(0.010)	NA	ND(0.010)
None Detected					NA NA	
Herbicides						
2,4,5-T		ND(0.0020)	ND(0.0020)	ND(0.0020)	NA	ND(0.0020)
2,4,5-TP		ND(0.0020)	ND(0.0020)	ND(0.0020)	NA NA	ND(0.0020)
2,4-D		ND(0.010)	ND(0.010)	ND(0.010)	NA NA	ND(0.010)
Dinoseb		ND(0.0010)	ND(0.0010)	ND(0.010)	NA NA	ND(0.0010)
None Detected					NA NA	
Furans					14/7	<u> </u>
2,3,7,8-TCDF		ND(0 000000000000	ND(0 0000000040)	ND(0 0000000084)	ND(0 0000000027	ND(0.0000000016) >
TCDFs (total)						ND(0.0000000016) X
1,2,3,7,8-PeCDF		ND(0.00000000000000000000000000000000000	, ,	, ,	`	` '
2,3,4,7,8-PeCDF						ND(0.0000000046 JB
PeCDFs (total)		ND(0.0000000016) >				
1.2.3.4.7.8-HxCD		, ,	ND(0.00000000022)	,		
1 1-1 1 1-		ND(0.0000000021 JB				
1,2,3,6,7,8-HxCD		ND(0.00000000000000)				
1,2,3,7,8,9-HxCD		,	,		· '	
2,3,4,6,7,8-HxCD	<u>'</u> Г	ND(0.0000000000000)				
HxCDFs (total)		0.0000000021	ND(0.000000014)	0.0000000036)	טטטטטטטטטט22) און	0.000000015

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

	Sample ID:	GMA2-5	GMA2-5	GMA2-5	GMA2-5	GMA2-6
	ate Collected:	04/17/02	11/04/02	04/28/03	10/28/03	04/15/02
1,2,3,4,6,7,8-HpCDF		ND(0.000000000070) ND(0.000000000090)	ND(0.0000000025)	ND(0.0000000029	ND(0.00000000022)	0.0000000032 J
1,2,3,4,7,8,9-HpCDF HpCDFs (total)		ND(0.00000000090)				0.00000000027)
OCDF (total)			ND(0.00000000050)			
Dioxins		ND(0.0000000016)	(טפטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	ND(0.000000012)	ND(0.0000000042)	ND(0.0000000004)
		ND(0.00000000000	ND/0 0000000010\	ND(0,0000000000	ND(0,000000000000	ND(0.00000000000)
2,3,7,8-TCDD		ND(0.00000000080) ND(0.00000000080)				
TCDDs (total)						
1,2,3,7,8-PeCDD PeCDDs (total)		ND(0.00000000080)				ND(0.0000000040) X
1,2,3,4,7,8-HxCDD		ND(0.00000000000000000000000000000000000				0.00000000040) X
1,2,3,4,7,8-HxCDD		ND(0.00000000090)				
1,2,3,7,8,9-HxCDD		ND(0.00000000000000000000000000000000000				
HxCDDs (total)		ND(0.00000000090)				
1,2,3,4,6,7,8-HpCDD			ND(0.0000000039)			
HpCDDs (total)			ND(0.0000000021)			
OCDD (total)		ND(0.0000000012)				0.00000000042)
Total TEQs (WHO TE		0.00000000044) 7	0.0000000003	0.000000010	0.0000000042	0.00000000793
Inorganics-Unfiltered		0.000000017	0.0000000023	0.000000010	0.0000000004	0.000000007
Antimony	4	ND(0.0600)	ND(0.0600)	ND(0.0600)	ND(0.0600)	ND(0.0600)
Anumony		ND(0.0600)	ND(0.0100) J	ND(0.0000)	ND(0.0100) J	ND(0.0600)
Barium		ND(0.200)	0.0140 B	0.0110 B	0.0160 B	ND(0.0100)
Beryllium		ND(0.200)	ND(0.00100)	ND(0.00100)	ND(0.00100)	ND(0.200)
Cadmium		ND(0.00100)	0.000650 B	ND(0.00100)	ND(0.00100)	ND(0.00100)
Chromium		ND(0.00300)	ND(0.0100)	ND(0.00300)	0.00130 B	ND(0.00300)
Cobalt		ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)
Copper		ND(0.0300)	ND(0.0300)	ND(0.0300)	ND (0.025)	ND(0.0300)
Cyanide		ND(0.0230)	ND(0.0230)	ND(0.023)	ND(0.0100)	0.00490 B
Lead		ND(0.00300)	ND(0.00300)	ND(0.00300) J	ND(0.00300) J	ND(0.00300)
Mercury		ND(0.00300) J	0.000260 J	ND(0.00300) 3	ND(0.00300) 3	ND(0.00300)
Nickel		ND(0.0400)	ND(0.0400)	ND(0.0400)	ND(0.0400)	ND(0.0400)
Selenium		ND(0.00500)	ND(0.00500)	ND(0.00500) J	ND(0.00500) J	ND(0.00500)
Silver		ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)
Sulfide		ND(5.00)	ND(5.00)	ND(5.00)	ND(5.00)	ND(5.00)
Thallium		ND(0.0100) J	ND(0.0100) J	ND(0.0100)	ND(0.0100)	ND(0.0100)
Tin		ND(0.0300)	ND(0.0300)	ND(0.0300)	ND(0.0300)	ND(0.0300)
Vanadium		ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)
Zinc		0.00800 B	0.0180 B	ND(0.020)	ND (0.020)	0.0200 B
Inorganics-Filtered				, ,	,	
Antimony		ND(0.0600)	ND(0.0600)	ND(0.0600)	ND(0.0600)	ND(0.0600)
Arsenic		ND(0.100)	ND(0.0100) J	ND(0.0100)	ND(0.0100) J	ND(0.100)
Barium		ND(0.200)	0.0150 B	0.0120 B	0.0150 B	ND(0.200)
Beryllium		ND(0.00100)	NA	0.000420 B	0.000320 B	ND(0.00100)
Cadmium		ND(0.0100)	0.00200 B	ND(0.00500)	ND(0.00500)	ND(0.0100)
Chromium		ND(0.0250)	0.00290 B	ND(0.0100)	ND(0.0100)	ND(0.0250)
Cobalt		ND(0.0500)	0.00240 B	ND(0.0500)	ND(0.0500)	ND(0.0500)
Copper		ND(0.100)	0.00340 B	ND(0.025)	0.00250 B	ND(0.100)
Cyanide		ΝA	ND(0.0100)	ND(0.0100)	ND(0.0100)	ΝA
Lead		ND(0.00300)	ND(0.00300)	ND(0.00300) J	ND(0.00300) J	ND(0.00300)
Mercury		ND(0.000200) J	0.000360 J	ND(0.000200)	ND(0.000200)	ND(0.000200)
Nickel		ND(0.0400)	ND(0.0400)	ND(0.0400)	ND(0.0400)	ND(0.0400)
Selenium		ND(0.00500)	ND(0.00500)	ND(0.00500) J	ND(0.00500) J	ND(0.00500)
Silver		ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)
Thallium		ND(0.0100) J	ND(0.0100) J	ND(0.0100)	ND(0.0100)	ND(0.0100)
Tin		ND(0.0300)	ND(0.0300)	ND(0.0300)	ND(0.0300)	ND(0.0300)
		ND(0.0500)	0.00160 B	ND(0.0500)	ND(0.0500)	ND(0.0500)
Vanadium		ND(0.0500)	0.00100 D	140(0.0300)	140(0.0300)	140(0.0000)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

	Sample ID:	GMA2-6	GMA2-6	GMA2-6	GMA2-7	GMA2-7
Parameter	Date Collected:	10/16/02	4/24-4/25/03	10/27/03	04/15/02	10/16/02
Volatile Organics						
1,1,1,2-Tetrachlor		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,1-Trichloroeth		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,2,2-Tetrachlor		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,2-Trichloroeth		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1-Dichloroethan		ND(0.0050)	ND(0.0050)	0.00061 J	ND(0.0050)	ND(0.0050)
1,1-Dichloroethen		ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,2,3-Trichloropro		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dibromo-3-ch		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dibromoethan		ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,2-Dichloroethan		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dichloropropa	ine	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,4-Dioxane		ND(0.20)	ND(0.20)	ND(0.20) J	ND(0.20)	ND(0.200) J
2-Butanone		ND(0.010)	ND(0.010) J	ND(0.010) J	ND(0.010)	ND(0.010)
2-Chloro-1,3-buta		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
2-Chloroethylviny	ether	ND(0.0050)	ND(0.0050) J	ND(0.0050)	ND(0.0050)	ND(0.0050)
2-Hexanone		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
3-Chloropropene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
4-Methyl-2-pentar	none	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Acetone		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Acetonitrile		ND(0.100) J	ND(0.10) J	ND(0.10) J	ND(0.10)	ND(0.100) J
Acrolein		ND(0.100) J	ND(0.10) J	ND(0.10)	ND(0.10)	ND(0.100) J
Acrylonitrile		ND(0.0050) J	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) J
Benzene	th a.e.a	ND(0.0050)	ND(0.0050) ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) ND(0.0050)
Bromodichlorome	tnane	ND(0.0050)	( )	ND(0.0050)	ND(0.0050)	\ /
Bromoform		ND(0.0050)	ND(0.0050)	ND(0.0050) J	ND(0.0050)	ND(0.0050)
Bromomethane Carbon Disulfide		ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)
Carbon Disuilide	ui al a	ND(0.0050)	ND(0.0050) ND(0.0050)	ND(0.0050)	ND(0.0050) ND(0.0050)	ND(0.0050)
Chlorobenzene	ride	ND(0.0050) ND(0.0050)	ND(0.0050)	ND(0.0050) 0.00057 J	ND(0.0050)	ND(0.0050) ND(0.0050)
Chloroethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chloroform		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chloromethane cis-1,3-Dichloropr	onono	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Dibromochlorome		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Dibromomethane	tilalic	ND(0.0050)	ND(0.0050)	ND(0.0050) J	ND(0.0050)	ND(0.0050)
Dichlorodifluorom	othono	ND(0.0050)	ND(0.0050)	ND(0.0050) 3	ND(0.0050)	ND(0.0050)
Ethyl Methacrylate		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Ethylbenzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Iodomethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Isobutanol		ND(0.10)	ND(0.10) J	ND(0.10) J	ND(0.10)	ND(0.10)
Methacrylonitrile		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Methyl Methacryla	ate	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Methylene Chloric		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Propionitrile		ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)	ND(0.010)
Styrene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Tetrachloroethene	9	ND(0.0020)	ND(0.0020)	ND(0.0020) J	ND(0.0020)	ND(0.0020)
Toluene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
trans-1,2-Dichlord	ethene	ND(0.0050)	ND(0.0050)	0.0084	ND(0.0050)	ND(0.0050)
trans-1,3-Dichlord		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
trans-1,4-Dichloro		ND(0.0050)	ND(0.0050) J	ND(0.0050)	ND(0.0050)	ND(0.0050)
Trichloroethene		ND(0.0050)	0.044	0.091	ND(0.0050)	ND(0.0050)
Trichlorofluorome	thane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Vinyl Acetate	-	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Vinyl Chloride		ND(0.0020)	ND(0.0020)	0.0027	ND(0.0020)	ND(0.0020)
Xylenes (total)		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

PCBs-Unfiltered Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248						
Aroclor-1221 Aroclor-1232 Aroclor-1242						
Aroclor-1232 Aroclor-1242		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1242		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1248		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1254		ND(0.000065)	0.00014	0.00022	ND(0.000065)	ND(0.000065)
Aroclor-1260		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Total PCBs		ND(0.000065)	0.00014	0.00022	ND(0.000065)	ND(0.000065)
PCBs-Filtered						
Aroclor-1016		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1221		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1232		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1242		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1248 Aroclor-1254		ND(0.000065) ND(0.000065)	ND(0.000065) 0.00011	ND(0.000065) 0.00015	ND(0.000065) ND(0.000065)	ND(0.000065) 0.00014
		ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1260 Total PCBs		ND(0.000065)	0.00011	0.00015	ND(0.000065)	0.00014
Semivolatile Orga	nice	ND(0.000003)	0.00011	0.00013	ND(0.000063)	0.00014
1,2,4,5-Tetrachloro		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1,2,4,5-Tetrachiorol		ND(0.010)	ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010)
1,2-Dichlorobenzen		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1,2-Diphenylhydraz		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1,3,5-Trinitrobenzer		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1,3-Dichlorobenzen		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1.3-Dinitrobenzene		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1,4-Dichlorobenzen		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1,4-Naphthoquinon		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1-Naphthylamine	-	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,3,4,6-Tetrachloro	phenol	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,4,5-Trichlorophen		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,4,6-Trichlorophen	nol	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,4-Dichlorophenol		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,4-Dimethylphenol		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,4-Dinitrophenol		ND(0.050)	ND(0.050) J	ND(0.050)	ND(0.050)	ND(0.050)
2,4-Dinitrotoluene		ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)	ND(0.010)
2,6-Dichlorophenol		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,6-Dinitrotoluene		ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)	ND(0.010)
2-Acetylaminofluore		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2-Chloronaphthaler	ne	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2-Chlorophenol		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2-Methylnaphthaler	ne	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2-Methylphenol		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2-Naphthylamine		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2-Nitroaniline		ND(0.050) ND(0.010)	ND(0.050) J	ND(0.050) ND(0.010)	ND(0.050) ND(0.010)	ND(0.050) ND(0.010)
2-Nitrophenol		ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)
2-Picoline 3&4-Methylphenol		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
3,3'-Dichlorobenzid	ino	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
3,3'-Dimethylbenzio		ND(0.020)	ND(0.020) J	ND(0.020) ND(0.010)	ND(0.020)	ND(0.020) ND(0.010)
3-Methylcholanthre		ND(0.010)	ND(0.010) 3	ND(0.010)	ND(0.010)	ND(0.010)
3-Nitroaniline		ND(0.050)	ND(0.050) J	ND(0.050)	ND(0.050)	ND(0.010)
4,6-Dinitro-2-methy	Iphenol	ND(0.050)	ND(0.050) J	ND(0.050)	ND(0.050)	ND(0.050)
4-Aminobiphenyl		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.030)
4-Bromophenyl-phe	envlether	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
4-Chloro-3-Methylp		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
4-Chloroaniline		ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)	ND(0.010)
4-Chlorobenzilate		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
4-Chlorophenyl-phe	enylether	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
4-Nitroaniline	-	ND(0.050)	ND(0.050) J	ND(0.050)	ND(0.050)	ND(0.050)
4-Nitrophenol		ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Semivolatile Orga	nics (continued)	· · · · · · · · · · · · · · · · · · ·				

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Acenaphthylene	Parameter	Sample ID: Date Collected:	GMA2-6 10/16/02	GMA2-6 4/24-4/25/03	GMA2-6 10/27/03	GMA2-7 04/15/02	GMA2-7 10/16/02
NPICO-101   NPIC	4-Nitroquinoline-	1-oxide	ND(0.010)	ND(0.010) J	ND(0.010) J	ND(0.010)	ND(0.010)
1,12-Dimethylbenz(a)anthracene   ND(0.010)   ND(0.01							ND(0.0100) J
1.3 - Dimethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphene   ND(0.010)   ND(			\ /				
Acenaphthene					ND(0.010)	ND(0.010)	
Acenaphthylene		nethylamine	( /	( / -			` '
Acetophenone	Acenaphthene				. ,		
Anline	Acenaphthylene						` '
Anthracene         ND(0.010)         ND(0.010)         ND(0.010)         ND(0.010)         ND(0.010)         ND(0.010)         ND(0.010)         ND(0.010)         ND(0.020)         ND(0.010)         <							` '
Aramite							
Senzidine							
Senzo(a)pyrene   ND(0.010)			( )		. ,	. ,	
ND(0.010)   ND			( / -				
Senzo(pl, hipper/lene   ND(0.010)   ND(0	. ,	ene	. ,	. ,	. ,		
NPICO,					. ,	. ,	
NPICO   NP				\ /			` '
Senzy Alcohol   ND(0.020)   ND(0.020)   ND(0.020)   ND(0.020)   ND(0.020)   ND(0.020)   ND(0.020)   ND(0.010)							\ /
Display		nene					
sis(2-Chloroethy)lether         ND(0.010)         ND(0.006)         ND(0.0060)         ND(0.010)         N		\					
				. ,			
Sutylbenzylphthalate							
Designation	,						
Dielatet   ND(0.010)   ND(0.		liate					
Dibenzo(a,h)anthracene							
Dienzofuran   ND(0.010)   ND				. ,	. ,		
Diethylphthalate		racene					
Dimethylphthalate							` '
Din-Butylphthalate	, ,	•					
Din-Octy/phthalate							
Diphenylamine							` '
Ethyl Methanesulfonate		ile	. ,				
ND(0.010)   ND(0		lfonato		. ,			` '
ND(0.010)   ND(0		iioriate					` '
Hexachlorobenzene							
Hexachlorobutadiene		ene	. ,				
					\ /	` '	
Hexachloroethane				\ /			
ND(0.0200) J ND(0.020) J ND(0.010) ND(0.01			. ,	. ,	. ,		
ND(0.010   ND(0.010)   ND(0.							
ND(0.010)   ND(0						ND(0.010)	` '
ND(0.010)   ND(0							
ND(0.010)   ND(0	Isodrin		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Methapyrilene         ND(0.010)	Isophorone		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Methyl Methanesulfonate         ND(0.010)         ND(0.010) </td <td>Isosafrole</td> <td></td> <td>ND(0.010)</td> <td>ND(0.010)</td> <td>ND(0.010)</td> <td>ND(0.010)</td> <td>ND(0.010)</td>	Isosafrole		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Naphthalene	Methapyrilene		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ND(0.010)   ND(0	Methyl Methanes	ulfonate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosodiethylamine ND(0.010) ND(0	Naphthalene						
N-Nitrosodimethylamine ND(0.010) ND(0.010) J ND(0.010) N	Nitrobenzene						ND(0.010)
N-Nitroso-di-n-butylamine ND(0.010)					\ /		ND(0.010)
N-Nitroso-di-n-propylamine ND(0.010)				· ' '			
N-Nitrosodiphenylamine ND(0.010) ND(							
N-Nitrosomethylethylamine ND(0.010)			\ /		\ /		
N-Nitrosomorpholine ND(0.010) ND(0.0							` '
N-Nitrosopiperidine ND(0.010) ND(0.0				. ,		. ,	` '
N-Nitrosopyrrolidine			\ /				` '
p.o,o-Triethylphosphorothioate ND(0.010)							
D-Toluidine ND(0.010) ND(0.010) ND(0.010) ND(0.010) ND(0.010) ND(0.010) ND(0.010) ND(0.010)							
Semivolatile Organics (continued)		sphorothioate	. ,		. ,		
			ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
p-Dimethylaminoazobenzene ND(0.010) ND(0.010) ND(0.010) ND(0.010) ND(0.010)							
	p-Dimethylamino	azobenzene	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)	ND(0.010)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-6 10/16/02	GMA2-6 4/24-4/25/03	GMA2-6 10/27/03	GMA2-7 04/15/02	GMA2-7 10/16/02
Pentachlorobenz	ene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Pentachloroethar	ne	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Pentachloronitrob	penzene	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)	ND(0.010)
Pentachlorophen	ol	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Phenacetin		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Phenanthrene		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Phenol		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Pronamide		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Pyrene		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Pyridine		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Safrole		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Thionazin		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Organochlorine	Pesticides		•			
4,4'-DDD		ND(0.00010)	ND(0.00010)	NA	ND(0.00010)	ND(0.00010)
4,4'-DDE		ND(0.00010)	ND(0.00010)	NA	ND(0.00010)	ND(0.00010)
4,4'-DDT		ND(0.00010)	ND(0.00010)	NA	ND(0.00010)	ND(0.00010)
Aldrin		ND(0.000050)	ND(0.000050)	NA	ND(0.000050)	ND(0.000050)
Alpha-BHC		ND(0.000050)	ND(0.000050)	NA	ND(0.000050)	ND(0.000050)
Alpha-Chlordane		ND(0.000050)	ND(0.000050)	NA	ND(0.000050)	ND(0.000050)
Beta-BHC		ND(0.000050)	ND(0.000050)	NA	ND(0.000050)	ND(0.000050)
Delta-BHC		ND(0.000050)	ND(0.000050)	NA	ND(0.000050)	ND(0.000050)
Dieldrin		ND(0.00010)	ND(0.00010)	NA	ND(0.00010)	ND(0.00010)
Endosulfan I		ND(0.00010)	ND(0.00010)	NA	ND(0.00010)	ND(0.00010)
Endosulfan II		ND(0.00010)	ND(0.00010)	NA	ND(0.00010)	ND(0.00010)
Endosulfan Sulfa	te	ND(0.00010)	ND(0.00010)	NA	ND(0.00010)	ND(0.00010)
Endrin		ND(0.00010)	ND(0.00010)	NA	ND(0.00010)	ND(0.00010)
Endrin Aldehyde		ND(0.00010)	ND(0.00010)	NA	ND(0.00010)	ND(0.00010)
Endrin Ketone		ND(0.00010)	ND(0.00010)	NA	ND(0.00010)	ND(0.00010)
Gamma-BHC (Lir	ndane)	ND(0.000050)	ND(0.000050)	NA	ND(0.000050)	ND(0.000050)
Gamma-Chlordar		ND(0.000050)	ND(0.000050)	NA	ND(0.000050)	ND(0.000050)
Heptachlor		ND(0.000050)	ND(0.000050)	NA	ND(0.000050)	ND(0.000050)
Heptachlor Epoxi	ide	ND(0.000050)	ND(0.000050)	NA	ND(0.000050)	ND(0.000050)
Kepone		ND(0.050)	ND(0.050)	NA	ND(0.050)	ND(0.050)
Methoxychlor		ND(0.00050)	ND(0.00050)	NA	ND(0.00050)	ND(0.00050)
Technical Chlord	ane	ND(0.00050)	ND(0.00050)	NA	ND(0.00050)	ND(0.00050)
Toxaphene		ND(0.0010)	ND(0.0010)	NA	ND(0.0010)	ND(0.0010)
Organophospha	te Pesticides	(0.00.0)	(3.33.37)		(0.00.0)	(0.00.0)
Dimethoate		ND(0.050)	ND(0.050)	NA	ND(0.050)	ND(0.050)
Disulfoton		ND(0.010)	ND(0.040)	NA NA	ND(0.010)	ND(0.010)
Ethyl Parathion		ND(0.010)	ND(0.040)	NA NA	ND(0.010)	ND(0.010)
Famphur		ND(0.050)	ND(0.050)	NA NA	ND(0.050)	ND(0.050)
Methyl Parathion		ND(0.010)	ND(0.040)	NA NA	ND(0.010)	ND(0.010)
Phorate		ND(0.010)	ND(0.040)	NA NA	ND(0.010)	ND(0.010)
Sulfotep		ND(0.010)	ND(0.040)	NA NA	ND(0.010)	ND(0.010)
None Detected				NA NA		14D(0.010)
Herbicides				14/1		
2,4,5-T		ND(0.0020)	ND(0.0020)	NA	ND(0.0020)	ND(0.0020)
2,4,5-TP		ND(0.0020)	ND(0.0020)	NA NA	ND(0.0020)	ND(0.0020)
2,4,5-1F 2,4-D		ND(0.0020)	ND(0.0020)	NA NA	ND(0.0020)	ND(0.0020)
Dinoseb		ND(0.010)	ND(0.010)	NA NA	ND(0.010)	ND(0.010) ND(0.0010)
None Detected		ND(0.0010)	ND(0.0010)	NA NA	ND(0.0010)	ND(0.0010)
				INA		
Furans		ND(0.0000000010)	ND/0.000000045	ND/0.00000000401	ND(0.0000000014)	ND/0 0000000000
2,3,7,8-TCDF					ND(0.0000000011)	
TCDFs (total)		ND(0.0000000013)			ND(0.0000000011)	
1,2,3,7,8-PeCDF		0.0000000015 J			ND(0.0000000025) >	
2,3,4,7,8-PeCDF		ND(0.0000000011) X				
PeCDFs (total)	\F	0.0000000015			ND(0.0000000051) >	
1,2,3,4,7,8-HxCD		ND(0.0000000017) X			ND(0.0000000026) >	
1,2,3,6,7,8-HxCD		ND(0.00000000093) >		ND(0.0000000030)		ND(0.0000000024)
1,2,3,7,8,9-HxCD		. ,		ND(0.0000000040)		
2,3,4,6,7,8-HxCD	) <del> </del>	0.0000000012 J		ND(0.0000000034)		ND(0.0000000024)
HxCDFs (total)		0.0000000012	0.000000012	0.0000000080	0.000000010	ND(0.0000000024)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF	Date Collected:	10/16/02	4/24-4/25/03			
1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF				10/27/03	04/15/02	10/16/02
HpCDFs (total) OCDF		ND(0.0000000025)		ND(0.0000000035		ND(0.0000000026)
OCDF		,			ND(0.00000000025)	
		ND(0.0000000025)		ND(0.0000000035	0.0000000024	ND(0.0000000028)
		ND(0.0000000049)	ND(0.000000010)	ND(0.0000000048)	ND(0.00000000042)	ND(0.0000000064)
Dioxins						
2,3,7,8-TCDD					ND(0.0000000016)	
TCDDs (total)		ND(0.000000018)	ND(0.0000000041)			
1,2,3,7,8-PeCDD		ND(0.0000000025)	ND(0.0000000033		0.0000000030 J	ND(0.0000000024)
PeCDDs (total)		ND(0.0000000025)	ND(0.0000000043)	(		ND(0.0000000032)
1,2,3,4,7,8-HxCDD		ND(0.0000000028)	ND(0.0000000040		0.0000000017 J	ND(0.0000000046)
1,2,3,6,7,8-HxCDD		ND(0.0000000025)	ND(0.0000000036		ND(0.0000000015)	
1,2,3,7,8,9-HxCDD		ND(0.0000000026)			ND(0.0000000025) 2	
HxCDDs (total)		ND(0.0000000026)	ND(0.0000000045		0.000000017	ND(0.0000000043)
1,2,3,4,6,7,8-HpCDD	)	0.0000000039 J	ND(0.0000000048		0.0000000030 J	0.0000000044 J
HpCDDs (total)		ND(0.000000039)	ND(0.0000000048			ND(0.0000000044)
OCDD	\	ND(0.000000036)	ND(0.000000016)		0.0000000076 J	ND(0.000000014)
Total TEQs (WHO T		0.0000000034	0.0000000068	0.0000000082	0.0000000061	0.0000000049
Inorganics-Unfiltere	ed					
Antimony		ND(0.0600)	ND(0.0600)	ND(0.0600)	ND(0.0600)	ND(0.0600)
Arsenic		ND(0.0100) J	ND(0.0100)	ND(0.0100)	ND(0.0100)	ND(0.0100) J
Barium		0.0240 B	0.0690 B	0.0710 B	ND(0.200)	0.0300 B
Beryllium		ND(0.00100)	ND(0.00100)	ND(0.00100)	ND(0.00100)	ND(0.00100)
Cadmium		ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)
Chromium		ND(0.0100)	ND(0.0100)	ND(0.0100)	ND(0.0100)	ND(0.0100)
Cobalt		ND(0.0500)	ND(0.0500)	0.00150 B	ND(0.0500)	ND(0.0500)
Copper		ND(0.0250)	ND(0.0250)	ND (0.025)	ND(0.0250)	ND(0.0250)
Cyanide		ND(0.0100)	ND(0.0100)	ND(0.0100)	0.00240 B	ND(0.0100)
Lead		ND(0.00300)	ND(0.00300) J	ND(0.00300)	ND(0.00300)	ND(0.00300)
Mercury		0.000270 J	ND(0.000200) J	0.0000400 B	ND(0.000200)	ND(0.00020) J
Nickel		0.00270 B	ND(0.0400)	0.00280 B	ND(0.0400)	0.00300 B
Selenium		ND(0.00500)	ND(0.00500) J	ND(0.00500) J	ND(0.00500)	ND(0.00500)
Silver		ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)
Sulfide		ND(5.00)	ND(5.00)	ND(5.00)	ND(5.00)	ND(5.00)
Thallium		ND(0.0100) J	ND(0.0100) J	ND(0.0100)	ND(0.0100)	ND(0.0100) J
Tin		ND(0.0300)	ND(0.0300)	ND(0.0300)	ND(0.0300)	ND(0.0300)
Vanadium Zinc		ND(0.0500) 0.0120 J	ND(0.0500) 0.00940 J	ND(0.0500) ND (0.020)	ND(0.0500) 0.0240	ND(0.0500) 0.0140 J
		0.0120 J	0.00940 J	ND (0.020)	0.0240	0.0140 J
Inorganics-Filtered		ND(0.0000)	0.0440.D	ND(0.0000)	ND(0.0000)	ND(0.0000)
Antimony		ND(0.0600)	0.0110 B	ND(0.0600)	ND(0.0600)	ND(0.0600)
Arsenic		ND(0.0100) J	ND(0.0100)	0.00470 B 0.0660 B	ND(0.100)	ND(0.0100) J
Barium Beryllium		0.0240 B ND(0.00100)	0.0680 B ND(0.00100)	ND(0.00100)	ND(0.200) ND(0.00100)	0.0300 B ND(0.00100)
Cadmium		ND(0.00100)	ND(0.00100)	ND(0.00100)	ND(0.00100)	ND(0.00100)
Chromium		ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.0100) ND(0.0250)	ND(0.00500)
Cobalt		ND(0.0100)	ND(0.0100)	0.00160 B	ND(0.0500)	ND(0.0100)
Copper		ND(0.0300)	ND(0.0300)	ND(0.025)	ND(0.0300)	ND(0.0250)
Cyanide		0.00340 B	ND(0.0230)	ND(0.023)	NA NA	ND(0.0230)
Lead		ND(0.00300)	ND(0.00300) J	ND(0.00300)	ND(0.00300)	ND(0.00300)
Mercury		0.000810	ND(0.00300) J	ND(0.00300)	ND(0.00300)	0.000700
Nickel		0.00320 B	ND(0.000200) 3	0.00270 B	ND(0.000200)	0.000700 0.00280 B
Selenium		ND(0.00500)	ND(0.00500) J	ND(0.00500) J	ND(0.0400)	ND(0.00500)
Silver		ND(0.00500)	ND(0.00500) 3	0.00120 B	ND(0.00500)	ND(0.00500)
Thallium		ND(0.00300)	ND(0.00300)	ND(0.0100)	ND(0.00300)	ND(0.00300)
Tin		ND(0.0300)	ND(0.0300)	ND(0.0300)	ND(0.0300)	ND(0.0300)
Vanadium		ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)
Zinc		0.00310 J	0.00940 J	ND(0.020)	ND(0.0200)	ND(0.0200) J

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-7 10/23/03	GMA2-7 05/20/04	GMA2-8 04/16/02	GMA2-8 11/04/02
Volatile Organic	cs				
1,1,1,2-Tetrachlo	proethane	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,1-Trichloroet		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,2,2-Tetrachlo	proethane	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,2-Trichloroet	hane	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1-Dichloroetha		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1-Dichloroethe		ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,2,3-Trichloropr	opane	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dibromo-3-cl	hloropropane	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dibromoetha		ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,2-Dichloroetha	ne	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dichloroprop	ane	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,4-Dioxane		ND(0.20) J [ND(0.20) J]	ND(0.20) J	ND(0.20) J	ND(0.20) J
2-Butanone		ND(0.010) J [ND(0.010) J]	ND(0.010)	ND(0.010)	ND(0.010)
2-Chloro-1,3-but	adiene	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
2-Chloroethylvin		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050) J	ND(0.0050) J
2-Hexanone	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
3-Chloropropene	1	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
4-Methyl-2-penta		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Acetone		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010) J	ND(0.010)
Acetonitrile		ND(0.10) J [ND(0.10) J]	ND(0.10)	ND(0.10) J	ND(0.10) J
Acrolein		ND(0.10) [ND(0.10)]	ND(0.10) J	ND(0.10) J	ND(0.10) J
Acrylonitrile		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050) J	ND(0.0050) J
Benzene		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050) 3	ND(0.0050) 3
Bromodichlorom	othano	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Bromoform	etriarie	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Bromomethane		ND(0.0030) [ND(0.0030)]	ND(0.0030)	ND(0.0030)	ND(0.0030)
Carbon Disulfide		ND(0.0020) [ND(0.0020)] ND(0.0050) [ND(0.0050)]	ND(0.0020)	ND(0.0020)	ND(0.0020)
Carbon Tetrachlo		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
	onde	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chlorobenzene					
Chloroethane Chloroform		ND(0.0050) [ND(0.0050)] ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050) ND(0.0050)	ND(0.0050)
			ND(0.0050)	. ,	ND(0.0050)
Chloromethane		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
cis-1,3-Dichlorop		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Dibromochlorom		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Dibromomethane		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Dichlorodifluoron		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Ethyl Methacryla	te	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Ethylbenzene		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Iodomethane		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Isobutanol		ND(0.10) J [ND(0.10) J]	ND(0.10) J	ND(0.10) J	ND(0.10) J
Methacrylonitrile		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Methyl Methacry		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Methylene Chlori	ide	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Propionitrile		ND(0.010) [ND(0.010)]	ND(0.010) J	ND(0.010) J	ND(0.010)
Styrene		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Tetrachloroether	ne	ND(0.0020) [ND(0.0020)]	ND(0.0020)	ND(0.0020)	ND(0.0020)
Toluene		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
trans-1,2-Dichlor		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
trans-1,3-Dichlor		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
trans-1,4-Dichlor	o-2-butene	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Trichloroethene		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Trichlorofluorome	ethane	ND(0.0050) [ND(0.0050)]	ND(0.0050) J	ND(0.0050)	ND(0.0050)
Vinyl Acetate		ND(0.0050) J [ND(0.0050) J]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Vinyl Chloride		ND(0.0020) [ND(0.0020)]	ND(0.0020)	ND(0.0020)	ND(0.0020)
Xylenes (total)		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Total VOCs		ND(0.20) [ND(0.20)]	ND(0.20)	ND(0.20)	ND(0.20)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter PCBs-Unfiltered Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Total PCBs PCBs-Filtered Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1254 Aroclor-1254	Date Collected:	10/23/03  ND(0.000065) [ND(0.000065)]	ND(0.000065)	ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065)	ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) 0.000086 ND(0.000065) 0.000086
Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Total PCBs PCBs-Filtered Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1232 Aroclor-1248 Aroclor-1248 Aroclor-1254		ND(0.000065) [ND(0.000065)]	ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065)	ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065)	ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) 0.000086 ND(0.000065)
Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1254 Aroclor-1260 Total PCBs PCBs-Filtered Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254		ND(0.000065) [ND(0.000065)]	ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065)	ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065)	ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) 0.000086 ND(0.000065)
Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Total PCBs PCBs-Filtered Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254		ND(0.000065) [ND(0.000065)]	ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065)	ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065)	ND(0.000065) ND(0.000065) ND(0.000065) 0.000086 ND(0.000065)
Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Total PCBs PCBs-Filtered Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254		ND(0.000065) [ND(0.000065)]	ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065)	ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065)	ND(0.000065) ND(0.000065) 0.000086 ND(0.000065)
Aroclor-1248 Aroclor-1254 Aroclor-1260 Total PCBs PCBs-Filtered Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254		ND(0.000065) [ND(0.000065)]  ND(0.000065) [ND(0.000065)]  ND(0.000065) [ND(0.000065)]  ND(0.000065) [ND(0.000065)]  ND(0.000065) [ND(0.000065)]  ND(0.000065) [ND(0.000065)]	ND(0.000065) ND(0.000065) ND(0.000065) ND(0.000065)	ND(0.000065) ND(0.000065) ND(0.000065)	ND(0.000065) 0.000086 ND(0.000065)
Aroclor-1254 Aroclor-1260 Total PCBs PCBs-Filtered Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254		ND(0.000065) [ND(0.000065)]  ND(0.000065) [ND(0.000065)]  ND(0.000065) [ND(0.000065)]  ND(0.000065) [ND(0.000065)]  ND(0.000065) [ND(0.000065)]	ND(0.000065) ND(0.000065) ND(0.000065)	ND(0.000065) ND(0.000065)	0.000086 ND(0.000065)
Aroclor-1260 Total PCBs PCBs-Filtered Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254		ND(0.000065) [ND(0.000065)] ND(0.000065) [ND(0.000065)] ND(0.000065) [ND(0.000065)] ND(0.000065) [ND(0.000065)]	ND(0.000065) ND(0.000065)	ND(0.000065)	ND(0.000065)
Total PCBs PCBs-Filtered Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254		ND(0.000065) [ND(0.000065)] ND(0.000065) [ND(0.000065)] ND(0.000065) [ND(0.000065)]	ND(0.000065)		,
Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254		ND(0.000065) [ND(0.000065)]	ND(0.000065)		
Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254		ND(0.000065) [ND(0.000065)]	ND(0.000065)		
Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254		ND(0.000065) [ND(0.000065)]		ND(0.000065)	ND(0.000065)
Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254			ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1248 Aroclor-1254			ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1248 Aroclor-1254		ND(0.000065) [ND(0.000065)]	ND(0.000065)	ND(0.000065)	ND(0.000065)
		ND(0.000065) [ND(0.000065)]	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1260		0.000048 J [0.000043 J]	ND(0.000065)	ND(0.000065)	ND(0.000065)
		ND(0.000065) [ND(0.000065)]	ND(0.000065)	ND(0.000065)	ND(0.000065)
Total PCBs		0.000048 J [0.000043 J]	ND(0.000065)	ND(0.000065)	ND(0.000065)
Semivolatile Organi	ics	·	, , ,	,	,
1,2,4,5-Tetrachlorobe		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1,2,4-Trichlorobenze		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1,2-Dichlorobenzene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1,2-Diphenylhydrazir		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1,3,5-Trinitrobenzene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1,3-Dichlorobenzene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1,3-Dinitrobenzene		ND(0.010) [ND(0.010)]	ND(0.010) J	ND(0.010)	ND(0.010)
1,4-Dichlorobenzene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1,4-Naphthoquinone		ND(0.010) [ND(0.010)]	ND(0.010) J	ND(0.010)	ND(0.010)
1-Naphthylamine		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2,3,4,6-Tetrachloroph	nenol	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010) J	ND(0.010)
2,4,5-Trichloropheno	I	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2,4,6-Trichloropheno	I	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2,4-Dichlorophenol		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2,4-Dimethylphenol		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2,4-Dinitrophenol		ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)	ND(0.050)
2,4-Dinitrotoluene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2,6-Dichlorophenol		ND(0.010) [ND(0.010)]	ND(0.010) J	ND(0.010)	ND(0.010)
2,6-Dinitrotoluene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Acetylaminofluorer		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Chloronaphthalene	)	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Chlorophenol		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Methylnaphthalene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Methylphenol		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Naphthylamine		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Nitroaniline		ND(0.050) [ND(0.050)]	ND(0.050) J	ND(0.050)	ND(0.050)
2-Nitrophenol		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Picoline		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
3&4-Methylphenol 3,3'-Dichlorobenzidin		ND(0.010) [ND(0.010)] ND(0.020) [ND(0.020)]	ND(0.010)	ND(0.010) ND(0.020)	ND(0.010) ND(0.020)
3,3'-Dicniorobenzidin		ND(0.020) [ND(0.020)] ND(0.010) [ND(0.010)]	ND(0.020) ND(0.010)	ND(0.020) ND(0.010)	ND(0.020) ND(0.010)
3-Methylcholanthren		ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) ND(0.010)	ND(0.010)	ND(0.010) ND(0.010)
3-Nitroaniline		ND(0.010) [ND(0.010)] ND(0.050) [ND(0.050)]	ND(0.010) ND(0.050)	ND(0.010) ND(0.050)	ND(0.010) ND(0.050)
4,6-Dinitro-2-methylp	henol	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)	ND(0.050)
4-Aminobiphenyl		ND(0.030) [ND(0.030)]	ND(0.030)	ND(0.030)	ND(0.030)
4-Bromophenyl-phen	vlether	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010) 3
4-Chloro-3-Methylph	•	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
4-Chloroaniline		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
4-Chlorobenzilate		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010) J	ND(0.010)
4-Chlorophenyl-phen	vlether	ND(0.010) [ND(0.010)]	ND(0.010) 3	ND(0.010) 3	ND(0.010)
4-Nitroaniline	1,100101	ND(0.050) [ND(0.050)]	ND(0.010)	ND(0.010)	ND(0.050)
4-Nitrophenol		ND(0.050) [ND(0.050)]	ND(0.050) J	ND(0.050)	ND(0.050)
Semivolatile Organi	ics (continued)	(0.000) [112 (0.000)]	(3.000) 0	(0.000)	(3.000)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	GMA2-7 10/23/03	GMA2-7 05/20/04	GMA2-8 04/16/02	GMA2-8 11/04/02
4-Nitroquinoline-1-	oxide	ND(0.010) [ND(0.010)]	ND(0.010) J	ND(0.010) J	ND(0.010) J
4-Phenylenediamii	ne	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010) J	ND(0.010) J
5-Nitro-o-toluidine		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
7,12-Dimethylbenz		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
a,a'-Dimethylphen	ethylamine	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Acenaphthene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Acenaphthylene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Acetophenone		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Aniline		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Anthracene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Aramite		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010) J	ND(0.010)
Benzidine		ND(0.020) J [ND(0.020) J]	ND(0.020)	ND(0.020)	ND(0.020)
Benzo(a)anthracer	ne	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Benzo(a)pyrene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Benzo(b)fluoranthe		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Benzo(g,h,i)peryle		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Benzo(k)fluoranthe	ene	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Benzyl Alcohol bis(2-Chloroethox)	\\mathana	ND(0.020) [ND(0.020)]	ND(0.020) ND(0.010)	ND(0.020) ND(0.010)	ND(0.020) J ND(0.010)
		ND(0.010) [ND(0.010)]			
bis(2-Chloroethyl)		ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)
bis(2-Chloroisopro bis(2-Ethylhexyl)pl		ND(0.0060) [ND(0.0060)]	ND(0.010)	ND(0.010)	ND(0.010)
Butylbenzylphthala		ND(0.0060) [ND(0.0060)] ND(0.010) [ND(0.010)]	ND(0.000)	ND(0.000)	ND(0.0060)
, ,,	ale	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Chrysene Diallate		ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Dibenzo(a,h)anthra	20000	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Dibenzofuran	acene	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Diethylphthalate		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Dimethylphthalate		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Di-n-Butylphthalate	9	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Di-n-Octylphthalate		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Diphenylamine		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Ethyl Methanesulfo	onate	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Fluoranthene	onato	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Fluorene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Hexachlorobenzer	ne	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Hexachlorobutadie		ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)	ND(0.0010)
Hexachlorocyclope	entadiene	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Hexachloroethane		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Hexachlorophene		ND(0.020) J [ND(0.020) J]	ND(0.020)	ND(0.020)	ND(0.020) J
Hexachloropropen	е	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010) J	ND(0.010)
Indeno(1,2,3-cd)py	yrene	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Isodrin		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Isophorone		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Isosafrole		ND(0.010) [ND(0.010)]	ND(0.010) J	ND(0.010)	ND(0.010)
Methapyrilene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010) J
Methyl Methanesu	lfonate	ND(0.010) [ND(0.010)]	ND(0.010) J	ND(0.010)	ND(0.010)
Naphthalene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Nitrobenzene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosodiethylan		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosodimethyla		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitroso-di-n-buty		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitroso-di-n-proj	,	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosodiphenyl		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosomethylet		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosomorpholi		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosopiperidin		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosopyrrolidin		ND(0.010) [ND(0.010)]	ND(0.010) ND(0.010)	ND(0.010)	ND(0.010)
o,o,o-Triethylphospo- o-Toluidine	priorotrioate	ND(0.010) [ND(0.010)]	\ /	ND(0.010)	ND(0.010)
o- i olululi le		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Semivolatile Orga					

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Pentschinrobenzene		Sample ID:	GMA2-7	GMA2-7	GMA2-8	GMA2-8
Pentschlorionethene	Parameter			05/20/04	04/16/02	11/04/02
Pentsahlorolirobenzene ND(0.010) [ND(0.010)] ND(0.010) ND(0.050) ND(0.050) ND(0.050) ND(0.050) ND(0.050) ND(0.050) ND(0.050) ND(0.050) ND(0.010) N	Pentachlorobenz	ene	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Pentachirophenol   ND(0.059)   ND(0.059)   ND(0.059)   ND(0.059)   ND(0.059)   ND(0.059)   Phenacatin   ND(0.010)   ND(0.000)   ND(0.000						
Prenacetin				\ /	ND(0.010) J	, ,
Prenanthrene		ol				
Prenol	Phenacetin					
Pronamide						
Pyrene	Phenol					
Pyridine						
NDIO.010   NDIO.0010						
ND(0.010  ND(0.010  ND(0.010  ND(0.010  ND(0.010  ND(0.010  ND(0.010  ND(0.0010  ND(0.0010  ND(0.0010  ND(0.0010  ND(0.0010  ND(0.0010  ND(0.00010  ND(0.0000001  ND(0.00000011  ND(0.000000011  ND(0.000000011  ND(0.000000011  ND(0.000000011  ND(						
Organochlorine Pesticides         NA         NA         ND(0.00010)         ND(0.000050)         N				. ,		\ /
A4-DDD			ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
A4-DDE	_	Pesticides				
NA   NA   NA   ND(0.00010)   ND(0.00010)						
Aldrin						
Alpha-BHC			I.			. ,
Alpha-Chlordane			I.			. ,
Belts_BHC			1			
Delta-BHC					( /	. ,
Dieletrin						
Endosulfan   NA						,
Endosulfan II			I.			
Endosulfan Sulfate						
Endrin   NA		4.				
Endrin Aldehyde		te				` '
Endrin Ketone			I.			. ,
Samma-BHC (Lindane)					\ /	
Gamma-Chlordane		adana)			, ,	` '
Heptachior			I.			. ,
Heptachlor Epoxide		10	I.			. ,
Kepone         NA         ND(0.050)         ND(0.050)           Methoxychlor         NA         NA         ND(0.00050)         ND(0.00050)           Technical Chlordane         NA         NA         ND(0.00050)         ND(0.00050)           Toxaphene         NA         NA         ND(0.0010)         ND(0.0010)           Disaphane         NA         NA         ND(0.0010)         ND(0.0010)           Disaphane         NA         NA         ND(0.0010)         ND(0.0010)           Disaphane         NA         NA         ND(0.010)         ND(0.010)           Ethyl Parathion         NA         NA         NA         ND(0.010)         ND(0.010)           Methyl Parathion         NA         NA         NA         ND(0.010)         ND(0.010)           Methyl Parathion         NA         NA         NA         ND(0.010)         ND(0.010)           Sulfotep         NA         NA         NA         ND(0.010)         ND(0.0		do				,
Methoxychlor         NA         NA         ND(0.00050)         ND(0.00050)           Technical Chlordane         NA         NA         ND(0.00050)         ND(0.00050)           Toxaphene         NA         NA         ND(0.0010)         ND(0.0010)           Toxaphene         NA         NA         ND(0.0010)         ND(0.0010)           Dimethoate         NA         NA         ND(0.050)         ND(0.050)           Disulfoton         NA         NA         ND(0.010)         ND(0.010)           Ethyl Parathion         NA         NA         ND(0.010)         ND(0.010)           Famphur         NA         NA         ND(0.050)         ND(0.050)           Methyl Parathion         NA         NA         ND(0.010)         ND(0.050)           Methyl Parathion         NA         NA         ND(0.010)         ND(0.010)           Sulfotep         NA         NA         NA         ND(0.010)         ND(0.010)           Sulfotep         NA         NA         NA         ND(0.010)         ND(0.010)           None Detected         NA         NA         NA         ND(0.0020)         ND(0.0020)           2,4,5-T         NA         NA         NA         ND(0.0020		ue				
Technical Chlordane						
Toxaphene		ane				
Organophosphate Pesticides         NA         NA         NA (0.050)         ND(0.050)           Direnthoate         NA         NA         NA         ND(0.010)         ND(0.010)           Disulfoton         NA         NA         NA         ND(0.010)         ND(0.010)           Ethyl Parathion         NA         NA         ND(0.050)         ND(0.050)           Famphur         NA         NA         NA         ND(0.010)         ND(0.010)           Phorate         NA         NA         NA         ND(0.010)         ND(0.010)           Sulfotep         NA         NA         ND(0.010)         ND(0.010)           None Detected         NA         NA         ND(0.010)         ND(0.010)           None Detected         NA         NA         ND(0.0020)         ND(0.0020)           2,4,5-TP         NA         NA         NA         ND(0.0020)         ND(0.0020)           2,4,5-TP         NA         NA         NA         ND(0.0020)         ND(0.0020)           2,4,5-TP         NA         NA         NA         ND(0.0010)         ND(0.0020)           2,4,5-TP         NA         NA         NA         ND(0.0010)         ND(0.0010)           None De		u110	I.			
Dimethoate   NA		te Pesticides			(5.55.5)	(0.00.0)
Disulfoton   NA			l NA	NA	ND(0.050)	ND(0.050)
Ethyl Parathion			I.			
Famphur						
Methyl Parathion         NA         NA         ND(0.010)         ND(0.010)           Phorate         NA         NA         ND(0.010)         ND(0.010)           Sulfotep         NA         NA         ND(0.010)         ND(0.010)           None Detected         NA         NA         NA            Herbicides               2,4,5-TP         NA         NA         ND(0.0020)         ND(0.0020)           2,4,5-TP         NA         NA         NA         ND(0.0020)         ND(0.0020)           2,4,5-TP         NA         NA         NA         ND(0.0020)         ND(0.0020)           2,4,5-TP         NA         NA         NA         ND(0.0020)         ND(0.0020)           2,4-D         NA         NA         NA         ND(0.0010)         ND(0.0020)           None Detected         NA         NA         NA         ND(0.0010)         ND(0.0010)           None Detected         NA         NA         NA         ND(0.00010)         ND(0.00010)           TCDFs (total)         ND(0.000000013) [ND(0.000000010]] ND(0.000000016] ND(0.000000090)         ND(0.000000010)         ND(0.0000000010)         ND(0.0000000010)         ND(0.000000	•					
Phorate   NA					ND(0.010)	, ,
NA	Phorate					
NA	Sulfotep		NA	NA		
2,4,5-T         NA         NA         ND(0.0020)         ND(0.0020)           2,4,5-TP         NA         NA         ND(0.0020)         ND(0.0020)           2,4-D         NA         NA         NA         ND(0.010)         ND(0.010)           Dinoseb         NA         NA         NA         ND(0.0010)         ND(0.0010)           None Detected         NA         NA         NA         ND(0.00010)         ND(0.00010)           Furans           2,3,7,8-TCDF         ND(0.0000000013) [ND(0.0000000010)]         ND(0.0000000016) ND(0.0000000015) X         ND(0.0000000010)           TCDFs (total)         ND(0.0000000013) [ND(0.00000000010)]         ND(0.0000000015) X         ND(0.0000000011) ND(0.0000000015) X           1,2,3,7,8-PeCDF         ND(0.000000001) [ND(0.0000000011)]         ND(0.0000000011) ND(0.0000000025) ND(0.0000000011) ND(0.0000000025) ND(0.00000000011) ND(0.00000000025) ND(0.00000000024) XND(0.00000000052)           PeCDFs (total)         ND(0.0000000001) [ND(0.00000000011)] ND(0.0000000025 ND(0.0000000024) XND(0.00000000025) ND(0.0000000024) XND(0.00000000025) ND(0.00000000024) XND(0.00000000025) ND(0.00000000024) XND(0.00000000025) ND(0.00000000024) XND(0.00000000025) ND(0.00000000022) XND(0.00000000025) ND(0.00000000022) ND(0.00000000022) XND(0.00000000025) ND(0.00000000022) ND(0.00000000022) ND(0.00000000022) ND(0.00000000022) ND(0.00000000022) ND(0.00000000022) ND(0.000000000022) ND(0.000000000022) ND(0.00000000022) ND(0.00000000022) ND(0.00000000022)	None Detected		NA	NA	′	
NA   NA   ND(0.0020)   ND(0.0020)	Herbicides			ı	Į.	
NA   NA   ND(0.0020)   ND(0.0020)	2,4,5-T		l NA	NA	ND(0.0020)	ND(0.0020)
NA	2,4,5-TP		NA	NA	ND(0.0020)	` /
NA	2,4-D		NA	NA	ND(0.010)	ND(0.010)
Furans           2,3,7,8-TCDF         ND(0.0000000013) [ND(0.0000000010)] ND(0.0000000016] ND(0.00000000090) ND(0.0000000010)           TCDFs (total)         ND(0.00000000013) [ND(0.0000000010)] ND(0.0000000016] ND(0.0000000015) X ND(0.0000000010)           1,2,3,7,8-PeCDF         ND(0.0000000010) [ND(0.0000000011)] ND(0.0000000025 ND(0.0000000011) ND(0.0000000025)           2,3,4,7,8-PeCDF         ND(0.0000000011) [ND(0.0000000012)] ND(0.0000000025 ND(0.0000000024) ND(0.0000000052)           PeCDFs (total)         ND(0.0000000001) [ND(0.0000000011)] ND(0.0000000025 ND(0.0000000024) ND(0.0000000025)           1,2,3,4,7,8-HxCDF         ND(0.00000000087) [ND(0.0000000001)] ND(0.0000000025 ND(0.0000000031) ND(0.0000000025)           1,2,3,6,7,8-HxCDF         ND(0.00000000086) [ND(0.00000000099) ND(0.0000000025 ND(0.0000000022) ND(0.0000000022) ND(0.0000000025)           1,2,3,7,8,9-HxCDF         ND(0.0000000001) [ND(0.00000000013)] ND(0.0000000025 ND(0.0000000050 J ND(0.0000000025)           1,2,3,7,8,9-HxCDF         ND(0.0000000001) [ND(0.00000000013)] ND(0.0000000025 ND(0.0000000050 J ND(0.0000000025)           1,2,3,4,6,7,8-HxCDF         ND(0.0000000001) [ND(0.00000000013)] ND(0.0000000025 ND(0.0000000030 J ND(0.0000000025)	Dinoseb		NA	NA	ND(0.0010)	
2,3,7,8-TCDF         ND(0.0000000013) [ND(0.0000000010]] ND(0.0000000016] ND(0.00000000090)         ND(0.0000000010)           TCDFs (total)         ND(0.0000000013) [ND(0.0000000010]] ND(0.0000000016] ND(0.0000000015) X ND(0.0000000010)           1,2,3,7,8-PeCDF         ND(0.0000000010) [ND(0.0000000011]] ND(0.0000000025 ND(0.0000000011) ND(0.0000000025)           2,3,4,7,8-PeCDF         ND(0.0000000011) [ND(0.0000000012]] ND(0.0000000025 ND(0.0000000024) ND(0.0000000052)           PeCDFs (total)         ND(0.0000000001) [ND(0.0000000011]] ND(0.0000000025 ND(0.0000000024) ND(0.0000000025)           1,2,3,4,7,8-HxCDF         ND(0.00000000087) [ND(0.0000000010]] ND(0.0000000025 ND(0.0000000031) ND(0.0000000025)           1,2,3,6,7,8-HxCDF         ND(0.00000000086) [ND(0.00000000099) ND(0.0000000025 ND(0.0000000022) ND(0.0000000022) ND(0.00000000025)           1,2,3,7,8,9-HxCDF         ND(0.0000000001) [ND(0.00000000013] ND(0.0000000025 ND(0.0000000050 J ND(0.0000000025)           1,2,3,7,8,9-HxCDF         ND(0.00000000097) [ND(0.00000000013] ND(0.0000000025 ND(0.000000030 J ND(0.0000000025)	None Detected		NA	NA		-
ND(0.0000000013) [ND(0.0000000016] ND(0.0000000015) X   ND(0.0000000010)     1,2,3,7,8-PeCDF   ND(0.0000000010) [ND(0.0000000011] ND(0.0000000015) X   ND(0.0000000010)     1,2,3,7,8-PeCDF   ND(0.0000000011) [ND(0.0000000011] ND(0.0000000025] ND(0.0000000011) ND(0.0000000025)     1,2,3,4,7,8-PeCDF   ND(0.0000000011) [ND(0.0000000012] ND(0.0000000025] ND(0.0000000024) ND(0.00000000052)     1,2,3,4,7,8-HxCDF   ND(0.0000000087) [ND(0.0000000011)] ND(0.0000000025] ND(0.0000000031) X ND(0.0000000025)     1,2,3,6,7,8-HxCDF   ND(0.0000000086) [ND(0.0000000099) ND(0.0000000025] ND(0.0000000022) X ND(0.0000000025)     1,2,3,7,8,9-HxCDF   ND(0.0000000011) [ND(0.00000000025] ND(0.00000000022) X ND(0.0000000025)     1,2,3,7,8,9-HxCDF   ND(0.00000000011) [ND(0.00000000025] ND(0.0000000050] ND(0.00000000052)     ND(0.00000000011) [ND(0.000000000025] ND(0.00000000050] ND(0.00000000025)     ND(0.000000000011) [ND(0.000000000025] ND(0.00000000050] ND(0.00000000000000000000000000000000000	Furans					
ND(0.0000000013) [ND(0.0000000016] ND(0.0000000015) X   ND(0.0000000010)     1,2,3,7,8-PeCDF   ND(0.0000000010) [ND(0.0000000011] ND(0.0000000015) X   ND(0.0000000010)     1,2,3,7,8-PeCDF   ND(0.0000000011) [ND(0.0000000011] ND(0.0000000025] ND(0.0000000011) ND(0.0000000025)     1,2,3,4,7,8-PeCDF   ND(0.0000000011) [ND(0.0000000012] ND(0.0000000025] ND(0.0000000024) ND(0.00000000052)     1,2,3,4,7,8-HxCDF   ND(0.0000000087) [ND(0.0000000011)] ND(0.0000000025] ND(0.0000000031) X ND(0.0000000025)     1,2,3,6,7,8-HxCDF   ND(0.0000000086) [ND(0.0000000099) ND(0.0000000025] ND(0.0000000022) X ND(0.0000000025)     1,2,3,7,8,9-HxCDF   ND(0.0000000011) [ND(0.00000000025] ND(0.00000000022) X ND(0.0000000025)     1,2,3,7,8,9-HxCDF   ND(0.00000000011) [ND(0.00000000025] ND(0.0000000050] ND(0.00000000052)     ND(0.00000000011) [ND(0.000000000025] ND(0.00000000050] ND(0.00000000025)     ND(0.000000000011) [ND(0.000000000025] ND(0.00000000050] ND(0.00000000000000000000000000000000000	2,3,7,8-TCDF		ND(0.0000000013) [ND(0.0000000010)]	ND(0.0000000016	ND(0.00000000090)	ND(0.000000010)
1,2,3,7,8-PeCDF         ND(0.000000001) [ND(0.0000000011)] ND(0.0000000025 ND(0.0000000011) ND(0.0000000025)           2,3,4,7,8-PeCDF         ND(0.0000000011) [ND(0.0000000012)] ND(0.0000000025 ND(0.0000000024) ND(0.0000000052)           PeCDFs (total)         ND(0.0000000010) [ND(0.0000000011)] ND(0.0000000025 ND(0.0000000024) ND(0.0000000025)           1,2,3,4,7,8-HxCDF         ND(0.0000000087) [ND(0.0000000010)] ND(0.0000000025 ND(0.0000000031) ND(0.0000000025)           1,2,3,6,7,8-HxCDF         ND(0.00000000086) [ND(0.00000000099) ND(0.0000000025 ND(0.0000000022) ND(0.0000000022) ND(0.0000000025)           1,2,3,7,8,9-HxCDF         ND(0.00000000011) [ND(0.00000000013)] ND(0.0000000025 O.0000000050 J ND(0.0000000025)           2,3,4,6,7,8-HxCDF         ND(0.00000000097) [ND(0.00000000011)] ND(0.0000000025 O.0000000030 J ND(0.0000000025)	TCDFs (total)			ND(0.0000000016	ND(0.000000015) X	ND(0.000000010)
2,3,4,7,8-PeCDF         ND(0.0000000011) [ND(0.0000000012)] ND(0.0000000025 ND(0.000000024) ND(0.00000000052)           PeCDFs (total)         ND(0.0000000010) [ND(0.0000000011)] ND(0.0000000025 ND(0.0000000024) ND(0.0000000025)           1,2,3,4,7,8-HxCDF         ND(0.0000000087) [ND(0.0000000010)] ND(0.0000000025 ND(0.0000000031) ND(0.0000000025)           1,2,3,6,7,8-HxCDF         ND(0.00000000086) [ND(0.00000000099) ND(0.0000000025 ND(0.0000000022) ND(0.0000000022) ND(0.0000000025)           1,2,3,7,8,9-HxCDF         ND(0.00000000011) [ND(0.0000000013)] ND(0.0000000025 O.0000000050 J ND(0.0000000025)           2,3,4,6,7,8-HxCDF         ND(0.00000000097) [ND(0.00000000011)] ND(0.0000000025 O.0000000030 J ND(0.0000000025)	1,2,3,7,8-PeCDF					ND(0.0000000025)
1,2,3,4,7,8-HxCDF         ND(0.00000000087) [ND(0.0000000010]] ND(0.00000000025 ND(0.0000000031) X ND(0.00000000025)           1,2,3,6,7,8-HxCDF         ND(0.00000000086) [ND(0.00000000099) ND(0.0000000025 ND(0.0000000022) X ND(0.0000000025)           1,2,3,7,8,9-HxCDF         ND(0.0000000011) [ND(0.0000000013]] ND(0.0000000025 O.0000000050 J ND(0.0000000025)           2,3,4,6,7,8-HxCDF         ND(0.00000000097) [ND(0.0000000011)] ND(0.0000000025 O.0000000030 J ND(0.0000000025)	2,3,4,7,8-PeCDF					
1,2,3,6,7,8-HxCDF         ND(0.00000000086) [ND(0.00000000099) ND(0.0000000025 ND(0.0000000022) X ND(0.00000000025)           1,2,3,7,8,9-HxCDF         ND(0.0000000011) [ND(0.0000000013)] ND(0.0000000025 0.0000000050 J ND(0.0000000025)           2,3,4,6,7,8-HxCDF         ND(0.00000000097) [ND(0.0000000011)] ND(0.00000000025 0.0000000030 J ND(0.0000000025)	PeCDFs (total)					ND(0.0000000025)
1,2,3,7,8,9-HxCDF         ND(0.0000000011) [ND(0.0000000013)] ND(0.0000000025         0.0000000050 J         ND(0.00000000025)           2,3,4,6,7,8-HxCDF         ND(0.00000000097) [ND(0.0000000011)] ND(0.00000000025         0.00000000030 J         ND(0.00000000025)	1,2,3,4,7,8-HxCD	F				
2,3,4,6,7,8-HxCDF ND(0.00000000097) [ND(0.00000000011)] ND(0.00000000025 0.0000000030 J ND(0.0000000025)	1,2,3,6,7,8-HxCD	F				ND(0.0000000025)
			, , , , , , , , , , , , , , , , , , , ,			
HxCDFs (total) ND(0.0000000086) [ND(0.0000000099)]ND(0.0000000025] 0.0000000080 ND(0.0000000025)	2,3,4,6,7,8-HxCD	F				ND(0.0000000025)
	HxCDFs (total)	<u> </u>	ND(0.0000000086) [ND(0.00000000099)	ND(0.0000000025	0.0000000080	ND(0.0000000025)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

_	Sample ID:		A2-7	GMA2-7	GMA2-8	GMA2-8
Parameter	Date Collected:		23/03	05/20/04	04/16/02	11/04/02
1,2,3,4,6,7,8-HpC			[ND(0.000000010)]			ND(0.0000000013)
1,2,3,4,7,8,9-HpC	DF		[ND(0.000000013)]			ND(0.0000000025)
HpCDFs (total)			[ND(0.0000000010)]			ND(0.0000000013)
OCDF		ND(0.0000000048) X	[ND(0.00000000072) 7	ND(0.0000000050	ND(0.0000000035)	ND(0.0000000050)
Dioxins						
2,3,7,8-TCDD			[ND(0.0000000010)]			ND(0.0000000010)
TCDDs (total)				ND(0.0000000021		ND(0.000000038)
1,2,3,7,8-PeCDD			[ND(0.00000000098)			ND(0.0000000025)
PeCDDs (total)			[ND(0.00000000098)			ND(0.0000000041)
1,2,3,4,7,8-HxCDI					ND(0.0000000015)	ND(0.0000000039)
1,2,3,6,7,8-HxCDI					ND(0.0000000015)	ND(0.0000000032)
1,2,3,7,8,9-HxCDI	)		[ND(0.000000010)]			ND(0.0000000034)
HxCDDs (total)					ND(0.0000000016) X	ND(0.0000000042)
1,2,3,4,6,7,8-HpC	טט	ND(0.00000000082)				ND(0.0000000018)
HpCDDs (total)			[ND(0.00000000065)			ND(0.0000000030)
OCDD			[ND(0.000000060)]		ND(0.000000015 JB)	ND(0.000000010)
Total TEQs (WHO		0.0000000017	[0.000000018]	0.0000000035	0.0000000071	0.000000030
Inorganics-Unfilt	ered					
Antimony		ND (0.060)	[ND(0.0600)]	ND(0.0600)	ND(0.0600)	ND(0.0600)
Arsenic		ND(0.0100)	[ND(0.0100)]	ND(0.0100)	ND(0.0100)	ND(0.0100) J
Barium			[0.0640 B]	0.0470 B	ND(0.200)	0.00930 B
Beryllium			[ND(0.00100)]	ND(0.00100)	ND(0.00100)	ND(0.00100)
Cadmium			[ND(0.00500)]	ND(0.00500)	ND(0.00500)	ND(0.00500)
Chromium			[0.00110 B]	ND(0.0100)	ND(0.0100)	ND(0.0100)
Cobalt			[ND(0.0500)]	ND(0.0500)	ND(0.0500)	ND(0.0500)
Copper			[ND(0.0250)]	ND(0.0250)	ND(0.0250)	ND(0.0250)
Cyanide			[0.00290 B]	0.00700 B	0.00530 B	ND(0.0100)
Lead			[ND(0.00300)]	0.00260 B	ND(0.00300)	ND(0.00300)
Mercury			[ND(0.000200)]	ND(0.000200)	ND(0.000200) J	0.000280 J
Nickel			[ND(0.0400)]	ND(0.0400)	ND(0.0400)	ND(0.0400)
Selenium			[ND(0.00500) J]	ND(0.00500) J	ND(0.00500)	ND(0.00500)
Silver			[0.00180 B]	ND(0.00500)	ND(0.00500)	ND(0.00500)
Sulfide			[ND(5.00)]	ND(5.00)	ND(5.00)	ND(5.00)
Thallium			[ND(0.0100)]	ND(0.0100)	ND(0.0100) J	ND(0.0100) J
Tin			[ND(0.0300)]	ND(0.0300)	ND(0.0300)	ND(0.0300)
Vanadium			[ND(0.0500)]	ND(0.0500)	ND(0.0500)	ND(0.0500)
Zinc		ND (0.020)	[ND (0.020)]	ND(0.020)	ND(0.0200)	0.0150 B
Inorganics-Filter	ed					
Antimony			[ND(0.0600)]	ND(0.0600)	ND(0.0600)	ND(0.0600)
Arsenic			[ND(0.0100)]	ND(0.0100)	ND(0.100)	ND(0.0100) J
Barium			[0.0630 B]	0.0510 B	ND(0.200)	0.00930 B
Beryllium			[ND(0.00100)]	ND(0.00100)	ND(0.00100)	ND(0.00100)
Cadmium		ND(0.00500)	[ND(0.00500)]	ND(0.00500)	ND(0.0100)	ND(0.00500)
Chromium		ND(0.0100)	[0.00140 B]	ND(0.0100)	ND(0.0250)	ND(0.0100)
Cobalt		ND(0.0500)	[ND(0.0500)]	ND(0.0500)	ND(0.0500)	ND(0.0500)
Copper		0.00170 B	[0.00370 B]	ND(0.0250)	ND(0.100)	ND(0.0250)
Cyanide		0.00330 B	[0.00330 B]	0.00370 B	NA	ND(0.0100)
Lead			[ND(0.00300)]	ND(0.00300)	ND(0.00300)	ND(0.00300)
Mercury		ND(0.000200)	[ND(0.000200)]	ND(0.000200)	ND(0.000200) J	0.000290 J
Nickel			[ND(0.0400)]	ND(0.0400)	ND(0.0400)	ND(0.0400)
Selenium		ND(0.00500) J	[ND(0.00500) J]	0.00530 J	ND(0.00500)	ND(0.00500)
Silver			[ND(0.00500)]	ND(0.00500)	ND(0.00500)	ND(0.00500)
Thallium			[ND(0.0100)]	ND(0.0100)	ND(0.0100) J	ND(0.0100) J
Tin			[ND(0.0300)]	ND(0.0300)	ND(0.0300)	ND(0.0300)
Vanadium		ND(0.0500)	[ND(0.0500)]	ND(0.0500)	ND(0.0500)	ND(0.0500)
Zinc		ND(0.020)	[ND(0.020)]	ND(0.0200)	0.0120 B	ND(0.0200)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

	Sample ID:	GMA2-8	GMA2-8	GMA2-9	GMA2-9
Parameter	Date Collected:	04/28/03	10/31/03	04/17/02	11/05/02
Volatile Organic					
1,1,1,2-Tetrachlo		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,1-Trichloroet		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,2,2-Tetrachlo		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1,2-Trichloroet		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1-Dichloroetha		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,1-Dichloroethe		ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,2,3-Trichloropr		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dibromo-3-cl		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dibromoetha		ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,2-Dichloroetha		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,2-Dichloroprop	ane	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,4-Dioxane		ND(0.20) [ND(0.20)]	ND(0.20) J	ND(0.20) J	ND(0.20)
2-Butanone		ND(0.010) J [ND(0.010) J]	ND(0.010) J	ND(0.010)	ND(0.010)
2-Chloro-1,3-but		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
2-Chloroethylving	yietner	ND(0.0050) J [ND(0.0050) J]	ND(0.0050)	ND(0.0050) J	ND(0.0050)
2-Hexanone		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
3-Chloropropene		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
4-Methyl-2-penta	anone	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Acetone		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010) J	ND(0.010)
Acetonitrile		ND(0.10) J [ND(0.10) J]	ND(0.10) J	ND(0.10) J	ND(0.10) J
Acrolein		ND(0.10) J [ND(0.10) J]	ND(0.10)	ND(0.10) J	ND(0.10) J
Acrylonitrile		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050) J	ND(0.0050) J
Benzene	- 4h	ND(0.0050) [ND(0.0050)] ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050) ND(0.0050)
Bromodichlorom	etnane	, , , , , , , , , , , , , , , , , , , ,	ND(0.0050)	ND(0.0050)	( )
Bromoform		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Bromomethane Carbon Disulfide		ND(0.0020) [ND(0.0020)] ND(0.0050) [ND(0.0050)]	ND(0.0020)	ND(0.0020)	ND(0.0020)
Carbon Tetrachlo		ND(0.0050) [ND(0.0050)]	ND(0.0050) ND(0.0050)	ND(0.0050) ND(0.0050)	ND(0.0050) ND(0.0050)
Chlorobenzene	onde	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chloroethane		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chloroform		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chloromethane		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
cis-1,3-Dichlorop	ronene	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Dibromochlorom		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Dibromomethane		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Dichlorodifluoron		ND(0.0050) J [ND(0.0050) J]	ND(0.0050) J	ND(0.0050)	ND(0.0050)
Ethyl Methacryla		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Ethylbenzene		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Iodomethane		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Isobutanol		ND(0.10) J [ND(0.10) J]	ND(0.10) J	ND(0.10) J	ND(0.10) J
Methacrylonitrile		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Methyl Methacry		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Methylene Chlori		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Propionitrile		ND(0.010) J [ND(0.010) J]	ND(0.010) J	ND(0.010) J	ND(0.010) J
Styrene		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Tetrachloroether	ne	ND(0.0020) [ND(0.0020)]	ND(0.0020) J	ND(0.0020)	ND(0.0020)
Toluene		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
trans-1,2-Dichlor	oethene	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
trans-1,3-Dichlor	opropene	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
trans-1,4-Dichlor	o-2-butene	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Trichloroethene		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Trichlorofluorome	ethane	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Vinyl Acetate		ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)
Vinyl Chloride		ND(0.0020) [ND(0.0020)]	ND(0.0020)	ND(0.0020)	ND(0.0020)
Xylenes (total)		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Total VOCs		ND(0.20) [ND(0.20)]	ND(0.20)	ND(0.20)	ND(0.20)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

	Sample ID:	GMA2-8	GMA2-8	GMA2-9	GMA2-9
Parameter	Date Collected:	04/28/03	10/31/03	04/17/02	11/05/02
PCBs-Unfiltered					
Aroclor-1016		ND(0.000065) [ND(0.000065)]	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1221		ND(0.000065) [ND(0.000065)]	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1232		ND(0.000065) [ND(0.000065)]	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1242		ND(0.000065) [ND(0.000065)]	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1248		ND(0.000065) [ND(0.000065)]	ND(0.000065)	ND(0.000065)	ND(0.000065)
Aroclor-1254		ND(0.000065) [0.000043 J]	ND(0.000065)	0.000054 J	ND(0.000065)
Aroclor-1260 Total PCBs		ND(0.000065) [ND(0.000065)] ND(0.000065) [0.000043 J]	ND(0.000065) ND(0.000065)	ND(0.000065) 0.000054 J	ND(0.000065) ND(0.000065)
PCBs-Filtered		ND(0.000063) [0.000043 3]	ND(0.000003)	0.000034 J	ND(0.000003)
Aroclor-1016		ND(0.0000CE) [ND(0.0000CE)]	ND(0,0000CE)	ND(0.00000E)	ND(0.000065) J
Aroclor-1221		ND(0.000065) [ND(0.000065)] ND(0.000065) [ND(0.000065)]	ND(0.000065) ND(0.000065)	ND(0.000065) ND(0.000065)	ND(0.000065) J
Aroclor-1232		ND(0.000065) [ND(0.000065)]	ND(0.000065)	ND(0.000065)	ND(0.000065) J
Aroclor-1242		ND(0.000065) [ND(0.000065)]	ND(0.000065)	ND(0.000065)	ND(0.000065) J
Aroclor-1248		ND(0.000065) [ND(0.000065)]	ND(0.000065)	ND(0.000065)	ND(0.000065) J
Aroclor-1254		ND(0.000065) [0.000034 J]	ND(0.000065)	ND(0.000065)	ND(0.000065) J
Aroclor-1260		ND(0.000065) [ND(0.000065)]	ND(0.000065)	ND(0.000065)	ND(0.000065) J
Total PCBs		ND(0.000065) [0.000034 J]	ND(0.000065)	ND(0.000065)	ND(0.000065) J
Semivolatile Org	anics	(0.00000) [0.00000000]	(**************************************	(112 (11111111)	(0.000000)
1,2,4,5-Tetrachlor		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1.2.4-Trichlorober		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1,2-Dichlorobenze		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1,2-Diphenylhydra	azine	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1,3,5-Trinitrobenz	ene	ND(0.010) [ND(0.010)]	ND(0.010) J	ND(0.010)	ND(0.010)
1,3-Dichlorobenze	ene	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1,3-Dinitrobenzen	е	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1,4-Dichlorobenze		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1,4-Naphthoquino	ne	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
1-Naphthylamine		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2,3,4,6-Tetrachlor		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010) J	ND(0.010)
2,4,5-Trichlorophe		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2,4,6-Trichlorophe		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2,4-Dichloropheno		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2,4-Dimethylphen	Ol	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2,4-Dinitrophenol		ND(0.050) J [ND(0.050) J]	ND(0.050)	ND(0.050)	ND(0.050)
2,4-Dinitrotoluene 2,6-Dichloropheno		ND(0.010) J [ND(0.010) J] ND(0.010) [ND(0.010)]	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)
2,6-Dinitrotoluene		ND(0.010) J [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Acetylaminofluo		ND(0.010) 5 [ND(0.010) 5]	ND(0.010)	ND(0.010)	ND(0.010)
2-Chloronaphthale		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Chlorophenol	5116	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Methylnaphthale	ene	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Methylphenol	SIIC	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Naphthylamine		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Nitroaniline		ND(0.050) J [ND(0.050) J]	ND(0.050)	ND(0.050)	ND(0.050) J
2-Nitrophenol		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
2-Picoline		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
3&4-Methylpheno		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
3,3'-Dichlorobenzi	idine	ND(0.020) J [ND(0.020) J]	ND(0.020)	ND(0.020)	ND(0.020)
3,3'-Dimethylbenz	ridine	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
3-Methylcholanthr	ene	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
3-Nitroaniline		ND(0.050) J [ND(0.050) J]	ND(0.050)	ND(0.050)	ND(0.050)
4,6-Dinitro-2-meth	ylphenol	ND(0.050) J [ND(0.050) J]	ND(0.050) J	ND(0.050)	ND(0.050)
4-Aminobiphenyl		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
4-Bromophenyl-pl		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
4-Chloro-3-Methy	Iphenol	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
4-Chloroaniline		ND(0.010) J [ND(0.010) J]	ND(0.010)	ND(0.010)	ND(0.010)
4-Chlorobenzilate		ND(0.010) J [ND(0.010) J]	ND(0.010) J	ND(0.010) J	ND(0.010)
4-Chlorophenyl-ph	nenylether	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
4-Nitroaniline		ND(0.050) J [ND(0.050) J]	ND(0.050)	ND(0.050)	ND(0.050)
4-Nitrophenol	ania de anti-	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)	ND(0.050)
semivolatile Ord	anics (continued)				

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

4-Nitroquinoline-1-o: 4-Phenylenediamine 5-Nitro-o-toluidine 7,12-Dimethylbenz(a,a'-Dimethylphenet Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene		ND(0.010) [ND ND(0.010) J [ND		ND(0.010) J	ND(0.010) J	ND(0.010)
5-Nitro-o-toluidine 7,12-Dimethylbenz(a a,a'-Dimethylphenet Acenaphthene Acenaphthylene Acetophenone Aniline		ND(0.010) J [ND			140(0.010)0	(0.010) אטוו
7,12-Dimethylbenz(a a,a'-Dimethylphenet Acenaphthene Acenaphthylene Acetophenone Aniline	a)anthracene		(0.010) J]	ND(0.010) J	ND(0.010) J	ND(0.010) J
a,a'-Dimethylphenet Acenaphthene Acenaphthylene Acetophenone Aniline	n)anthracene	ND(0.010) [ND	(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Acenaphthene Acenaphthylene Acetophenone Aniline		ND(0.010) [ND	(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Acenaphthylene Acetophenone Aniline	nylamine	ND(0.010) [ND	(0.010)]	ND(0.010) J	ND(0.010)	ND(0.010)
Acetophenone Aniline		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Aniline		ND(0.010) [ND	(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
		ND(0.010) [ND	(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Anthracene		ND(0.010) [ND	(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
		ND(0.010) [ND	(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Aramite		ND(0.010) J [ND	(0.010) J]	ND(0.010) J	ND(0.010) J	ND(0.010) J
Benzidine		ND(0.020) [ND	·	ND(0.020)	ND(0.020)	ND(0.020)
Benzo(a)anthracene		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Benzo(a)pyrene		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Benzo(b)fluoranther	e	ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Benzo(g,h,i)perylene		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Benzo(k)fluoranthen		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Benzyl Alcohol	-	ND(0.020) J [ND		ND(0.020)	ND(0.010)	ND(0.010)
bis(2-Chloroethoxy)	nethane	ND(0.020) 3 [ND		ND(0.020)	ND(0.010)	ND(0.020)
bis(2-Chloroethyl)etl		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
bis(2-Chloroisopropy		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
bis(2-Ethylhexyl)pht		ND(0.0060) J [ND		ND(0.0060)	ND(0.0060)	ND(0.0060)
		ND(0.0000) 3 [ND				
Butylbenzylphthalate				ND(0.010)	ND(0.010)	ND(0.010)
Chrysene		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Diallate		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Dibenzo(a,h)anthrac	ene	ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Dibenzofuran		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Diethylphthalate		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Dimethylphthalate		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Di-n-Butylphthalate		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Di-n-Octylphthalate		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Diphenylamine		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Ethyl Methanesulfor	ate	ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Fluoranthene		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Fluorene		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Hexachlorobenzene		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Hexachlorobutadien	Э	ND(0.0010) [ND		ND(0.0010)	ND(0.0010)	ND(0.0010)
Hexachlorocyclopen	tadiene	ND(0.010) [ND	(0.010)]	ND(0.010)	ND(0.010)	ND(0.010) J
Hexachloroethane		ND(0.010) [ND	(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Hexachlorophene		ND(0.020) [ND	(0.020)]	ND(0.020) J	ND(0.020)	ND(0.020) J
Hexachloropropene		ND(0.010) J [ND	(0.010) J]	ND(0.010)	ND(0.010) J	ND(0.010) J
Indeno(1,2,3-cd)pyre	ene	ND(0.010) [ND	(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Isodrin		ND(0.010) J [ND	(0.010) J]	ND(0.010)	ND(0.010)	ND(0.010)
Isophorone		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Isosafrole		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Methapyrilene		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Methyl Methanesulfo	nate	ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Naphthalene		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
Nitrobenzene		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosodiethylamii	ne	ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosodimethylan		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
N-Nitroso-di-n-butyla		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
N-Nitroso-di-n-propy		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosodiphenylan		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosomethylethy		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosomorpholine		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosopiperidine		ND(0.010) [ND		ND(0.010)	ND(0.010)	ND(0.010)
N-Nitrosopiperidine N-Nitrosopyrrolidine		` '.	· /•		` '	
17	orothiosts	ND(0.010) [ND ND(0.010) [ND		ND(0.010)	ND(0.010) ND(0.010)	ND(0.010)
o,o,o-Triethylphosph	orotriioate			ND(0.010)		ND(0.010) J
o-Toluidine	ing (next)	ND(0.010) [ND	(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Semivolatile Organ p-Dimethylaminoazo		ND(0.010) [ND	(	ND(0.010)	ND(0.010)	ND(0.010)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Sample Parameter Date Collecte		GMA2-8 10/31/03	GMA2-9 04/17/02	GMA2-9 11/05/02
Pentachlorobenzene	ND(0.010) J [ND(0.010) J]	ND(0.010)	ND(0.010)	ND(0.010)
Pentachloroethane	ND(0.010) 3 [ND(0.010) 3]	ND(0.010)	ND(0.010)	ND(0.010)
Pentachloronitrobenzene	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010) J	ND(0.010)
Pentachlorophenol	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)	ND(0.050)
Phenacetin	ND(0.030) [ND(0.030)]	ND(0.010)	ND(0.030)	ND(0.010)
Phenanthrene	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Phenol	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Pronamide	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Pyrene	ND(0.010) J [ND(0.010) J]	ND(0.010)	ND(0.010)	ND(0.010)
Pyridine	ND(0.010) 3 [ND(0.010) 3]	ND(0.010)	ND(0.010)	ND(0.010)
Safrole	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Thionazin	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)
Organochlorine Pesticides	ND(0.00040) [ND(0.00040)]	T 110	ND(0.00040)	NID (0.00040)
4,4'-DDD	ND(0.00010) [ND(0.00010)]	NA	ND(0.00010)	ND(0.00010)
4,4'-DDE	ND(0.00010) [ND(0.00010)]	NA	ND(0.00010)	ND(0.00010)
4,4'-DDT	ND(0.00010) [ND(0.00010)]	NA	ND(0.00010)	ND(0.00010)
Aldrin	ND(0.000050) [ND(0.000050)]	NA	ND(0.000050)	ND(0.000050)
Alpha-BHC	ND(0.000050) [ND(0.000050)]	NA	ND(0.000050)	ND(0.000050)
Alpha-Chlordane	ND(0.000050) [ND(0.000050)]	NA	ND(0.000050)	ND(0.000050)
Beta-BHC	ND(0.000050) [ND(0.000050)]	NA	ND(0.000050)	ND(0.000050)
Delta-BHC	ND(0.000050) [ND(0.000050)]	NA	ND(0.000050)	ND(0.000050)
Dieldrin	ND(0.00010) [ND(0.00010)]	NA	ND(0.00010)	ND(0.00010)
Endosulfan I	ND(0.00010) [ND(0.00010)]	NA	ND(0.00010)	ND(0.00010)
Endosulfan II	ND(0.00010) [ND(0.00010)]	NA	ND(0.00010)	ND(0.00010)
Endosulfan Sulfate	ND(0.00010) [ND(0.00010)]	NA	ND(0.00010)	ND(0.00010)
Endrin	ND(0.00010) [ND(0.00010)]	NA	ND(0.00010)	ND(0.00010)
Endrin Aldehyde	ND(0.00010) [ND(0.00010)]	NA	ND(0.00010)	ND(0.00010)
Endrin Ketone	ND(0.00010) [ND(0.00010)]	NA	ND(0.00010)	ND(0.00010)
Gamma-BHC (Lindane)	ND(0.000050) [ND(0.000050)]	NA	ND(0.000050)	ND(0.000050)
Gamma-Chlordane	ND(0.000050) [ND(0.000050)]	NA	ND(0.000050)	ND(0.000050)
Heptachlor	ND(0.000050) [ND(0.000050)]	NA	ND(0.000050)	ND(0.000050)
Heptachlor Epoxide	ND(0.000050) [ND(0.000050)]	NA	ND(0.000050)	ND(0.000050)
Kepone	ND(0.050) [ND(0.050)]	NA	ND(0.050)	ND(0.050)
Methoxychlor	ND(0.00050) [ND(0.00050)]	NA	ND(0.00050)	ND(0.00050)
Technical Chlordane	ND(0.00050) [ND(0.00050)]	NA	ND(0.00050)	ND(0.00050)
Toxaphene	ND(0.0010) [ND(0.0010)]	NA	ND(0.0010)	ND(0.0010)
Organophosphate Pesticides			112 (0.0010)	112 (0.0010)
Dimethoate	ND(0.050) [ND(0.050)]	NA	ND(0.050)	ND(0.050)
Disulfoton	ND(0.030) [ND(0.030)]	NA NA	ND(0.030)	ND(0.030)
Ethyl Parathion	ND(0.010) [ND(0.010)]	NA NA	ND(0.010)	ND(0.010)
Famphur	ND(0.010) [ND(0.010)]	NA NA	ND(0.010)	ND(0.010)
Methyl Parathion	ND(0.030) [ND(0.030)] ND(0.010) [ND(0.010)]	NA NA	ND(0.050)	ND(0.030)
Phorate				
	ND(0.010) [ND(0.010)]	NA NA	ND(0.010)	ND(0.010)
Sulfotep	ND(0.010) [ND(0.010)]	NA NA	ND(0.010)	ND(0.010)
None Detected		NA		
Herbicides				
2,4,5-T	ND(0.0020) [ND(0.0020)]	NA	ND(0.0020)	ND(0.0020)
2,4,5-TP	ND(0.0020) [ND(0.0020)]	NA	ND(0.0020)	ND(0.0020)
2,4-D	ND(0.010) [ND(0.010)]	NA	ND(0.010)	ND(0.010)
Dinoseb	ND(0.0010) [ND(0.0010)]	NA	ND(0.0010)	ND(0.0010)
None Detected		NA		
Furans				
2,3,7,8-TCDF	ND(0.0000000084) [ND(0.0000000078		ND(0.0000000011)	
TCDFs (total)	ND(0.0000000084) [ND(0.000000011]	) ND(0.0000000069)	ND(0.0000000011)	ND(0.0000000014)
1,2,3,7,8-PeCDF	ND(0.0000000030) [ND(0.0000000034	· · · · · · · · · · · · · · · · · · ·	ND(0.0000000010)	0.0000000010 J
2,3,4,7,8-PeCDF	ND(0.0000000030) [ND(0.0000000034		,	
PeCDFs (total)	ND(0.0000000030) [ND(0.0000000034	, , ,	,	
1,2,3,4,7,8-HxCDF	ND(0.0000000025) [ND(0.0000000041		ND(0.00000000000000000000000000000000000	
1,2,3,6,7,8-HxCDF	ND(0.0000000025) [ND(0.0000000037		ND(0.00000000000000000000000000000000000	
1,2,3,7,8,9-HxCDF	ND(0.0000000025) [ND(0.0000000049			
2,3,4,6,7,8-HxCDF	ND(0.0000000025) [ND(0.0000000040			
HxCDFs (total)	ND(0.0000000025) [ND(0.0000000040		ND(0.0000000010)	
inobi o (total)	112(0.0000000020) [ND(0.0000000041	A . 15 (0.00000000000)	112(0.0000000010)	1.12(0.000000021

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

	Sample ID:		A2-8	GMA2-8	GMA2-9	GMA2-9
	Date Collected:		28/03	10/31/03	04/17/02	11/05/02
1,2,3,4,6,7,8-HpCDF		ND(0.0000000025)	[ND(0.0000000035)	ND(0.00000000098)	ND(0.0000000011)	
1,2,3,4,7,8,9-HpCDF				ND(0.0000000013)		
HpCDFs (total)				ND(0.00000000098)		
OCDF		ND(0.000000010)	[ND(0.000000016)]	ND(0.0000000025)	ND(0.0000000020)	ND(0.0000000049)
Dioxins						
2,3,7,8-TCDD		ND(0.0000000085)		ND(0.000000015)	ND(0.0000000014)	
TCDDs (total)		ND(0.0000000085)		ND(0.000000015)	ND(0.000000014)	
1,2,3,7,8-PeCDD		ND(0.0000000042)			ND(0.0000000011)	
PeCDDs (total)		ND(0.0000000042)			ND(0.0000000016) >	
1,2,3,4,7,8-HxCDD		ND(0.000000036)			ND(0.0000000011)	
1,2,3,6,7,8-HxCDD		ND(0.000000032)			ND(0.000000011)	
1,2,3,7,8,9-HxCDD		ND(0.0000000035)			ND(0.000000011)	'
HxCDDs (total)		ND(0.000000034)			ND(0.000000011)	
1,2,3,4,6,7,8-HpCDD				ND(0.0000000048) >		
HpCDDs (total)		ND(0.000000038)			ND(0.000000018)	
OCDD		ND(0.000000018)	[ND(0.000000024)]		ND(0.0000000059) >	
Total TEQs (WHO T		0.0000000087	[0.00000010]	0.0000000099	0.0000000020	0.0000000040
Inorganics-Unfiltered	∌d					
Antimony		ND(0.0600)		ND(0.0600)	ND(0.0600)	ND(0.0600)
Arsenic		ND(0.0100)		ND(0.0100) J	ND(0.0100)	ND(0.0100)
Barium		0.0160 B		0.0120 B	ND(0.200)	0.0170 B
Beryllium		ND(0.00100)		ND(0.00100)	ND(0.00100)	ND(0.00100)
Cadmium			[ND(0.00500)]	ND(0.00500)	ND(0.00500)	0.00230 B
Chromium		ND(0.0100)		ND (0.010)	ND(0.0100)	ND(0.0100)
Cobalt		ND(0.0500)		ND(0.0500)	ND(0.0500)	ND(0.0500)
Copper			[ND(0.025)]	ND(0.0250)	ND(0.0250)	ND(0.0250)
Cyanide		ND(0.0100)		ND(0.0100)	0.0170	0.00230 B
Lead			[ND(0.00300) J]	ND(0.00300) J	ND(0.00300)	ND(0.00300)
Mercury			[ND(0.000200)]	ND(0.000200)	ND(0.000200) J	ND(0.00026)
Nickel			[ND(0.0400)]	ND(0.0400)	ND(0.0400)	0.00230 B
Selenium			[ND(0.00500) J]	ND(0.00500)	ND(0.00500)	ND(0.00500)
Silver			[ND(0.00500)]	ND(0.00500)	ND(0.00500)	ND(0.00500)
Sulfide Thallium		ND(5.00)		ND(5.00)	ND(5.00)	ND(5.00)
		ND(0.0100)		ND(0.0100)	ND(0.0100) J	ND(0.0100) J ND(0.0300)
Tin Vanadium		ND(0.0300)		ND(0.0300) ND(0.0500)	ND(0.0300) ND(0.0500)	0.00240 B
Zinc		ND(0.0500)	[ND(0.035)]	ND (0.020)	ND(0.0300)	0.00240 B 0.0180 B
		ND(0.020)	[(פנט.ט)טאו]	ND (0.020)	ND(0.0200)	0.0100 B
Inorganics-Filtered		ND(0.0000)	[NID/0.0000\]	ND(0.0000)	ND(0.0000)	ND(0.0000)
Antimony			[ND(0.0600)]	ND(0.0600)	ND(0.0600)	ND(0.0600)
Arsenic Barium			[ND(0.0100)] [0.0150 B]	ND(0.0100) J	ND(0.100) ND(0.200)	ND(0.0100) J
				0.0120 B ND(0.00100)	ND(0.200) ND(0.00100)	0.0140 B
Beryllium			[0.000490 B]			ND(0.00100)
Cadmium Chromium		ND(0.00500) ND(0.0100)	[ND(0.00500)]	ND(0.00500) ND(0.010)	ND(0.0100) ND(0.0250)	ND(0.00500) ND(0.0100)
Cobalt		ND(0.0500)		ND(0.010) ND(0.0500)	ND(0.0250)	ND(0.0500)
Copper			[ND(0.0500)] [ND(0.025)]	ND(0.0500) ND(0.0250)	ND(0.0500) ND(0.100)	ND(0.0500) ND(0.0250)
Copper Cyanide			[ND(0.025)] [ND(0.0100)]	ND(0.0250) ND(0.0100)		ND(0.0250) ND(0.0100)
Lead			[ND(0.0100)]	ND(0.00300) J	NA ND(0.00300)	ND(0.00300)
Mercury		. ,	[ND(0.00300) 3]	ND(0.00300) 3	ND(0.00300)	ND(0.00300)
Nickel			[ND(0.0400)]	ND(0.000200)	ND(0.000200) 3	ND(0.000200)
Selenium		. ,	[ND(0.0400)] [ND(0.00500) J]	ND(0.0400) ND(0.00500)	ND(0.0400) ND(0.00500)	ND(0.00500)
Silver			[ND(0.00500)]	ND(0.00500)	ND(0.00500)	ND(0.00500)
Thallium			[ND(0.00300)]	ND(0.00300)	ND(0.00300)	ND(0.00300)
Tin			[ND(0.0300)]	ND(0.0300)	ND(0.0300)	ND(0.0300)
Vanadium			[ND(0.0500)]	ND(0.0500)	ND(0.0500)	ND(0.0500)
Zinc		. ,	[ND(0.035)]	ND(0.0300)	0.00540 B	0.00160 B J
21110		140(0.020)	[[ערוסיסא	140(0.020)	0.00040 B	0.00100 D J

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Table B-1 Baseline Monitorii

Baseline Assessment Final Report And Long Term Monitoring Program Proposal Groundwater Managment Area 2
General Electric Company - Pittsfield, Massachusetts
(Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	GMA2-9 04/28/03	GMA2-9 10/28/03	GMA2-9 05/25/04	GMA2-9 11/03/05	GMA2-9 04/14/06	Parameter
Volatile Organic	s			•		•	Volatile Organics
1,1,1,2-Tetrachlo	roethane	ND(0.0050)	ND(0.0050)	NA	NA	NA	1,1,1,2-Tetrachloro
1,1,1-Trichloroeth	nane	ND(0.0050)	ND(0.0050)	NA	NA	NA	1,1,1-Trichloroethar
1,1,2,2-Tetrachlo	roethane	ND(0.0050)	ND(0.0050)	NA	NA	NA	1,1,2,2-Tetrachloro
1,1,2-Trichloroeth	nane	ND(0.0050)	ND(0.0050)	NA	NA	NA	1,1,2-Trichloroethar
1,1-Dichloroethar	ne	ND(0.0050)	ND(0.0050)	NA	NA	NA	1,1-Dichloroethane
1,1-Dichloroether	ne	ND(0.0010)	ND(0.0010)	NA	NA	NA	1,1-Dichloroethene
1,2,3-Trichloropro	opane	ND(0.0050)	ND(0.0050)	NA	NA	NA	1,2,3-Trichloropropa
1,2-Dibromo-3-ch	loropropane	ND(0.0050)	ND(0.0050)	NA	NA	NA	1,2-Dibromo-3-chlo
1,2-Dibromoethai	ne	ND(0.0010)	ND(0.0010)	NA	NA	NA	1,2-Dibromoethane
1,2-Dichloroethar		ND(0.0050)	ND(0.0050)	NA	NA	NA	1,2-Dichloroethane
1,2-Dichloropropa	ane	ND(0.0050)	ND(0.0050)	NA	NA	NA	1,2-Dichloropropan
1,4-Dioxane		ND(0.20)	ND(0.20) J	NA	NA	NA	1,4-Dioxane
2-Butanone		ND(0.010) J	ND(0.010) J	NA	NA	NA	2-Butanone
2-Chloro-1,3-buta	adiene	ND(0.0050)	ND(0.0050)	NA	NA	NA	2-Chloro-1,3-butadi
2-Chloroethylviny	ether ether	ND(0.0050) J	ND(0.0050)	NA	NA	NA	2-Chloroethylvinyle
2-Hexanone		ND(0.010)	ND(0.010)	NA	NA	NA	2-Hexanone
3-Chloropropene		ND(0.0050)	ND(0.0050)	NA	NA	NA	3-Chloropropene
4-Methyl-2-penta	none	ND(0.010)	ND(0.010)	NA	NA	NA	4-Methyl-2-pentano
Acetone		ND(0.010)	ND(0.010)	NA	NA	NA	Acetone
Acetonitrile		ND(0.10) J	ND(0.10) J	NA	NA	NA	Acetonitrile
Acrolein		ND(0.10) J	ND(0.10)	NA	NA	NA	Acrolein
Acrylonitrile		ND(0.0050)	ND(0.0050)	NA	NA	NA	Acrylonitrile
Benzene		ND(0.0050)	ND(0.0050)	NA	NA	NA	Benzene
Bromodichlorome	ethane	ND(0.0050)	ND(0.0050)	NA	NA	NA	Bromodichlorometh
Bromoform		ND(0.0050)	ND(0.0050)	NA	NA	NA	Bromoform
Bromomethane		ND(0.0020)	ND(0.0020)	NA	NA NA	NA	Bromomethane
Carbon Disulfide		ND(0.0050)	ND(0.0050)	NA	NA	NA	Carbon Disulfide
Carbon Tetrachic	oride	ND(0.0050)	ND(0.0050)	NA	NA NA	NA	Carbon Tetrachloric
Chlorobenzene		ND(0.0050)	ND(0.0050)	NA	NA	NA	Chlorobenzene
Chloroethane		ND(0.0050)	ND(0.0050)	NA	NA NA	NA	Chloroethane
Chloroform		ND(0.0050)	ND(0.0050)	NA	NA NA	NA	Chloroform
Chloromethane		ND(0.0050)	ND(0.0050) J	NA	NA NA	NA	Chloromethane
cis-1,3-Dichlorop	ropene	ND(0.0050)	ND(0.0050)	NA	NA NA	NA	cis-1,3-Dichloroprop
Dibromochlorome		ND(0.0050)	ND(0.0050)	NA	NA	NA	Dibromochlorometh
Dibromomethane		ND(0.0050)	ND(0.0050)	NA	NA NA	NA	Dibromomethane
Dichlorodifluorom		ND(0.0050) J	ND(0.0050)	NA NA	NA NA	NA NA	Dichlorodifluoromet
Ethyl Methacrylat		ND(0.0050)	ND(0.0050)	NA	NA NA	NA	Ethyl Methacrylate
Ethylbenzene		ND(0.0050)	ND(0.0050)	NA	NA	NA	Ethylbenzene
Iodomethane		ND(0.0050)	ND(0.0050)	NA.	NA NA	NA NA	Iodomethane
Isobutanol		ND(0.10) J	ND(0.10) J	NA	NA NA	NA	Isobutanol
Methacrylonitrile		ND(0.0050)	ND(0.0050)	NA	NA NA	NA	Methacrylonitrile
Methyl Methacryl	ate	ND(0.0050)	ND(0.0050)	NA	NA NA	NA	Methyl Methacrylate
Methylene Chlori		ND(0.0050)	ND(0.0050)	NA	NA NA	NA	Methylene Chloride
Propionitrile		ND(0.010) J	ND(0.010)	NA	NA NA	NA	Propionitrile
Styrene		ND(0.0050)	ND(0.0050)	NA	NA NA	NA	Styrene
Tetrachloroethen	е	ND(0.0020)	ND(0.0020)	NA NA	NA NA	NA	Tetrachloroethene
Toluene	•	ND(0.0050)	ND(0.0050)	NA	NA NA	NA	Toluene
trans-1,2-Dichlore	nethene	ND(0.0050)	ND(0.0050)	NA NA	NA NA	NA NA	trans-1,2-Dichloroe
trans-1,3-Dichlor		ND(0.0050)	ND(0.0050)	NA NA	NA NA	NA NA	trans-1,3-Dichlorop
trans-1,4-Dichlor		ND(0.0050)	ND(0.0050)	NA NA	NA NA	NA	trans-1,4-Dichloro-2
Trichloroethene	o E Dutorio	ND(0.0050)	ND(0.0050)	NA NA	NA NA	NA NA	Trichloroethene
Trichlorofluorome	athane	ND(0.0050)	ND(0.0050)	NA NA	NA NA	NA NA	Trichlorofluorometh
Vinyl Acetate	, u i u i i c	ND(0.0050)	ND(0.0050) ND(0.0050) J	NA NA	NA NA	NA NA	Vinyl Acetate
Vinyl Acetate Vinyl Chloride		ND(0.0050) ND(0.0020)	ND(0.0050) J	NA NA	NA NA	NA NA	Vinyl Chloride
Xylenes (total)		ND(0.0020) ND(0.010)	ND(0.0020) ND(0.010)	NA NA	NA NA	NA NA	Xylenes (total)
Total VOCs		ND(0.010)	ND(0.010)			NA NA	Total VOCs
TOTAL VOUS		ND(0.20)	ואט(ט.עט)	NA	NA	INA	TOTAL VOCS

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Table B-1 Baseline Monitorii

Baseline Assessment Final Report And Long Term Monitoring Program Proposal Groundwater Managment Area 2
General Electric Company - Pittsfield, Massachusetts
(Results are presented in parts per million, ppm)

Devementes	Sample ID:	GMA2-9	GMA2-9	GMA2-9	GMA2-9	GMA2-9	Davamatar
Parameter	Date Collected:	04/28/03	10/28/03	05/25/04	11/03/05	04/14/06	Parameter
PCBs-Unfiltered			I				PCBs-Unfiltered
Aroclor-1016		ND(0.000065)	ND(0.000065)	NA	NA NA	NA	Aroclor-1016
Aroclor-1221		ND(0.000065)	ND(0.000065)	NA	NA NA	NA	Aroclor-1221
Aroclor-1232		ND(0.000065)	ND(0.000065)	NA NA	NA NA	NA	Aroclor-1232
Aroclor-1242 Aroclor-1248		ND(0.000065) ND(0.000065)	ND(0.000065) ND(0.000065)	NA NA	NA NA	NA NA	Aroclor-1242
Aroclor-1248 Aroclor-1254		0.00027	0.00068	NA NA	NA NA	NA NA	Aroclor-1248 Aroclor-1254
Aroclor-1260		ND(0.000065)	ND(0.00065)	NA NA	NA NA	NA NA	Aroclor-1260
Total PCBs		0.00027	0.00068	NA NA	NA NA	NA NA	Total PCBs
PCBs-Filtered		0.00027	0.00000	INA	INA	INA	PCBs-Filtered
Aroclor-1016		ND(0.000065)	ND(0.000065)	ND(0,0000CE)	ND(0.000065) [ND(0.000065)	ND/0 0000CE	
Aroclor-1221		ND(0.000065)	ND(0.000065)		ND(0.000065) [ND(0.000065)		
Aroclor-1232		ND(0.000065)	ND(0.000065)		ND(0.000065) [ND(0.000065)		
Aroclor-1242		ND(0.000065)	ND(0.000065)		ND(0.000065) [ND(0.000065)		
Aroclor-1248		ND(0.000065)	ND(0.000065)		ND(0.000065) [ND(0.000065)		
Aroclor-1254		0.000082	0.00038	ND(0.000065)		0.000076	Aroclor-1254
Aroclor-1260		ND(0.000065)	ND(0.00065)		ND(0.00065) [ND(0.00065)		
Total PCBs		0.000082	0.00038	ND(0.000065)		0.000076	Total PCBs
	ronico	0.000062	0.00036	ND(0.000065)	0.000363 [0.000633]	0.000076	
Semivolatile Org		ND(0.040)	ND(0.040)	NIA	I NA	T NIA	Semivolatile Orga
1,2,4,5-Tetrachlo		ND(0.010)	ND(0.010)	NA	NA NA	NA	1,2,4,5-Tetrachlorol
1,2,4-Trichlorobe		ND(0.010)	ND(0.010)	NA	NA NA	NA	1,2,4-Trichlorobenz
1,2-Dichlorobenz		ND(0.010)	ND(0.010)	NA	NA NA	NA	1,2-Dichlorobenzen
1,2-Diphenylhydr		ND(0.010)	ND(0.010)	NA	NA NA	NA	1,2-Diphenylhydraz
1,3,5-Trinitrobenz		ND(0.010)	ND(0.010)	NA	NA NA	NA	1,3,5-Trinitrobenzer
1,3-Dichlorobenz		ND(0.010)	ND(0.010)	NA	NA NA	NA	1,3-Dichlorobenzen
1,3-Dinitrobenzer		ND(0.010)	ND(0.010)	NA	NA NA	NA	1,3-Dinitrobenzene
1,4-Dichlorobenz		ND(0.010)	ND(0.010)	NA	NA NA	NA	1,4-Dichlorobenzen
1,4-Naphthoquin		ND(0.010)	ND(0.010)	NA	NA NA	NA	1,4-Naphthoquinon
1-Naphthylamine		ND(0.010)	ND(0.010)	NA	NA NA	NA	1-Naphthylamine
2,3,4,6-Tetrachlo		ND(0.010)	ND(0.010)	NA	NA NA	NA	2,3,4,6-Tetrachloro
2,4,5-Trichloroph		ND(0.010)	ND(0.010)	NA	NA NA	NA	2,4,5-Trichlorophen
2,4,6-Trichloroph		ND(0.010)	ND(0.010)	NA	NA NA	NA	2,4,6-Trichlorophen
2,4-Dichlorophen 2,4-Dimethylpher		ND(0.010)	ND(0.010) ND(0.010)	NA NA	NA NA	NA NA	2,4-Dichlorophenol 2,4-Dimethylphenol
2,4-Dimethylpher 2,4-Dinitrophenol		ND(0.010) ND(0.050) J	ND(0.010) ND(0.050)	NA NA	NA NA	NA NA	2,4-Dimethylphenol
2,4-Dinitroprierio		ND(0.050) J	ND(0.030)	NA NA	NA NA	NA NA	2,4-Dinitrotoluene
2,6-Dichlorophen		ND(0.010) 3	ND(0.010)	NA NA	NA NA	NA NA	
2,6-Dinitrotoluene		ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA	2,6-Dichlorophenol 2,6-Dinitrotoluene
2-Acetylaminoflu		ND(0.010) 3	ND(0.010)	NA NA	NA NA	NA NA	2-Acetylaminofluore
2-Chloronaphtha		ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA	2-Chloronaphthaler
2-Chlorophenol	ene	ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA	2-Chlorophenol
2-Methylnaphtha	one	ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA	2-Methylnaphthaler
2-Methylphenol	eric	ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA	2-Methylphenol
2-Naphthylamine		ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA	2-Naphthylamine
2-Nitroaniline		ND(0.050) J	ND(0.050)	NA	NA NA	NA NA	2-Nitroaniline
2-Nitrophenol		ND(0.010)	ND(0.010)	NA	NA NA	NA NA	2-Nitrophenol
2-Picoline		ND(0.010)	ND(0.010)	NA	NA NA	NA NA	2-Picoline
3&4-Methylpheno	nl	ND(0.010)	ND(0.010)	NA	NA NA	NA	3&4-Methylphenol
3.3'-Dichlorobenz		ND(0.020) J	ND(0.020)	NA	NA	NA	3,3'-Dichlorobenzid
3,3'-Dimethylben		ND(0.010)	ND(0.010)	NA	NA NA	NA	3,3'-Dimethylbenzio
3-Methylcholanth		ND(0.010)	ND(0.010)	NA	NA	NA	3-Methylcholanthre
3-Nitroaniline		ND(0.050) J	ND(0.050)	NA	NA	NA	3-Nitroaniline
4,6-Dinitro-2-met	hylphenol	ND(0.050) J	ND(0.050)	NA	NA	NA	4,6-Dinitro-2-methy
4-Aminobiphenyl	V 1	ND(0.010)	ND(0.010)	NA	NA NA	NA	4-Aminobiphenyl
4-Bromophenyl-p	henylether	ND(0.010)	ND(0.010)	NA	NA NA	NA NA	4-Bromophenyl-phe
4-Chloro-3-Methy		ND(0.010)	ND(0.010)	NA	NA NA	NA	4-Chloro-3-Methylp
4-Chloroaniline	1	ND(0.010) J	ND(0.010)	NA	NA NA	NA NA	4-Chloroaniline
4-Chlorobenzilate	9	ND(0.010) J	ND(0.010)	NA	NA NA	NA	4-Chlorobenzilate
4-Chlorophenyl-p		ND(0.010) 0	ND(0.010)	NA NA	NA NA	NA NA	4-Chlorophenyl-phe
4-Nitroaniline	,	ND(0.050) J	ND(0.050)	NA NA	NA NA	NA NA	4-Nitroaniline
4-Nitrophenol		ND(0.050)	ND(0.050)	NA	NA NA	NA NA	4-Nitrophenol
	ganics (continued)	(/	(3.222)			1	Semivolatile Organ
- January Org	,ac (commada)						

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Baseline Monitorii
Baseline Assessm

Table B-1

Baseline Assessment Final Report And Long Term Monitoring Program Proposal Groundwater Managment Area 2
General Electric Company - Pittsfield, Massachusetts
(Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	GMA2-9 04/28/03	GMA2-9 10/28/03	GMA2-9 05/25/04	GMA2-9 11/03/05	GMA2-9 04/14/06	Parameter
4-Nitroquinoline-1-	oxide	ND(0.010)	ND(0.010) J	NA	NA	NA	4-Nitroquinoline-1-
4-Phenylenediamii	ne	ND(0.010) J	ND(0.010)	NA	NA	NA	4-Phenylenediamir
5-Nitro-o-toluidine		ND(0.010)	ND(0.010)	NA	NA	NA	5-Nitro-o-toluidine
7,12-Dimethylbenz	z(a)anthracene	ND(0.010)	ND(0.010)	NA	NA	NA	7,12-Dimethylbenz
a,a'-Dimethylphen	ethylamine	ND(0.010)	ND(0.010)	NA	NA	NA	a,a'-Dimethylphene
Acenaphthene		ND(0.010)	ND(0.010)	NA	NA	NA	Acenaphthene
Acenaphthylene		ND(0.010)	ND(0.010)	NA	NA	NA	Acenaphthylene
Acetophenone		ND(0.010)	ND(0.010)	NA	NA	NA	Acetophenone
Aniline		ND(0.010)	ND(0.010)	NA	NA	NA	Aniline
Anthracene		ND(0.010)	ND(0.010)	NA	NA	NA	Anthracene
Aramite		ND(0.010) J	ND(0.010)	NA	NA	NA	Aramite
Benzidine		ND(0.020)	ND(0.020)	NA	NA	NA	Benzidine
Benzo(a)anthracer	ne	ND(0.010)	ND(0.010)	NA	NA	NA	Benzo(a)anthracen
Benzo(a)pyrene		ND(0.010)	ND(0.010)	NA	NA	NA	Benzo(a)pyrene
Benzo(b)fluoranthe	ene	ND(0.010)	ND(0.010)	NA	NA	NA	Benzo(b)fluoranthe
Benzo(g,h,i)peryle	ne	ND(0.010)	ND(0.010)	NA	NA	NA	Benzo(g,h,i)peryler
Benzo(k)fluoranthe	ene	ND(0.010)	ND(0.010)	NA	NA	NA	Benzo(k)fluoranthe
Benzyl Alcohol		ND(0.020) J	ND(0.020)	NA	NA	NA	Benzyl Alcohol
bis(2-Chloroethoxy	/)methane	ND(0.010)	ND(0.010)	NA	NA	NA	bis(2-Chloroethoxy
bis(2-Chloroethyl)e	ether	ND(0.010)	ND(0.010)	NA	NA	NA	bis(2-Chloroethyl)e
bis(2-Chloroisopro	pyl)ether	ND(0.010)	ND(0.010)	NA	NA	NA	bis(2-Chloroisoprop
bis(2-Ethylhexyl)pl	nthalate	ND(0.0060) J	ND(0.0060)	NA	NA	NA	bis(2-Ethylhexyl)ph
Butylbenzylphthala	ate	ND(0.010)	ND(0.010)	NA	NA	NA	Butylbenzylphthala
Chrysene		ND(0.010)	ND(0.010)	NA	NA	NA	Chrysene
Diallate		ND(0.010)	ND(0.010)	NA	NA	NA	Diallate
Dibenzo(a,h)anthra	acene	ND(0.010)	ND(0.010)	NA	NA	NA	Dibenzo(a,h)anthra
Dibenzofuran		ND(0.010)	ND(0.010)	NA	NA	NA	Dibenzofuran
Diethylphthalate		ND(0.010)	ND(0.010)	NA	NA	NA	Diethylphthalate
Dimethylphthalate		ND(0.010)	ND(0.010)	NA	NA	NA	Dimethylphthalate
Di-n-Butylphthalate	Э	ND(0.010)	ND(0.010)	NA	NA	NA	Di-n-Butylphthalate
Di-n-Octylphthalate		ND(0.010)	ND(0.010)	NA	NA	NA	Di-n-Octylphthalate
Diphenylamine		ND(0.010)	ND(0.010)	NA	NA	NA	Diphenylamine
Ethyl Methanesulfo	onate	ND(0.010)	ND(0.010)	NA	NA	NA	Ethyl Methanesulfo
Fluoranthene		ND(0.010)	ND(0.010)	NA	NA	NA	Fluoranthene
Fluorene		ND(0.010)	ND(0.010)	NA	NA	NA	Fluorene
Hexachlorobenzer	ne	ND(0.010)	ND(0.010)	NA	NA	NA	Hexachlorobenzen
Hexachlorobutadie		ND(0.0010)	ND(0.0010)	NA	NA	NA	Hexachlorobutadie
Hexachlorocyclope		ND(0.010)	ND(0.010)	NA	NA	NA	Hexachlorocyclope
Hexachloroethane		ND(0.010)	ND(0.010)	NA	NA	NA	Hexachloroethane
Hexachlorophene		ND(0.020)	ND(0.020) J	NA	NA	NA	Hexachlorophene
Hexachloropropen	е	ND(0.010) J	ND(0.010) J	NA	NA	NA	Hexachloropropene
Indeno(1,2,3-cd)py		ND(0.010)	ND(0.010)	NA	NA	NA	Indeno(1,2,3-cd)py
Isodrin		ND(0.010) J	ND(0.010)	NA	NA	NA	Isodrin
Isophorone		ND(0.010)	ND(0.010)	NA	NA	NA	Isophorone
Isosafrole		ND(0.010)	ND(0.010)	NA	NA	NA	Isosafrole
Methapyrilene		ND(0.010)	ND(0.010)	NA	NA NA	NA	Methapyrilene
Methyl Methanesu	lfonate	ND(0.010)	ND(0.010)	NA	NA	NA	Methyl Methanesul
Naphthalene		ND(0.010)	ND(0.010)	NA	NA	NA	Naphthalene
Nitrobenzene		ND(0.010)	ND(0.010)	NA	NA NA	NA NA	Nitrobenzene
N-Nitrosodiethylan	nine	ND(0.010)	ND(0.010)	NA	NA	NA	N-Nitrosodiethylam
N-Nitrosodimethyla		ND(0.010)	ND(0.010)	NA	NA	NA	N-Nitrosodimethyla
N-Nitroso-di-n-buty		ND(0.010)	ND(0.010)	NA	NA NA	NA NA	N-Nitroso-di-n-buty
N-Nitroso-di-n-proj		ND(0.010)	ND(0.010)	NA NA	NA	NA NA	N-Nitroso-di-n-prop
N-Nitrosodiphenyla		ND(0.010)	ND(0.010)	NA NA	NA	NA NA	N-Nitrosodiphenyla
N-Nitrosomethylet		ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA	N-Nitrosomethyleth
N-Nitrosomorpholi	•	ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA	N-Nitrosomorpholin
N-Nitrosopiperidin		ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA	N-Nitrosopiperidine
N-Nitrosopiperidin		ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA	N-Nitrosopyrrolidine
o,o,o-Triethylphosi		ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA	o,o,o-Triethylphosp
o-Toluidine	Uniolotinoate	ND(0.010)	ND(0.010)	NA NA	NA NA	NA NA	o-Toluidine
	nios (oontinusd)	(טוט,טוט)	(טוט,טןטאין	INA	INA	INA	
Semivolatile Orga	zobenzene	ND(0.010)	ND(0.010)	NA	NA	NA	Semivolatile Orga

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Table B-1 Baseline Monitorii

Baseline Assessment Final Report And Long Term Monitoring Program Proposal Groundwater Managment Area 2 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

Pentachlorosthane	arameter		GMA2- 04/14/0	GMA2-9 11/03/05	GMA2-9 05/25/04	GMA2-9 10/28/03	GMA2-9 04/28/03	Sample ID: Parameter Date Collected:
Fentachloronirobenzene	entachlorobenzen	A	NA	NA	NA	ND(0.010)	ND(0.010) J	Pentachlorobenzene
Pentanblorophenol   ND(0.050)   ND(0.050)   NA   NA   NA   NA   Pentanblorophenol   ND(0.010)   ND(0.010)   NA   NA   NA   NA   NA   Phenanthrene   ND(0.010)   ND(0.010)   NA   NA   NA   NA   Pronamice   ND(0.010)   ND(0.010)   NA   NA   NA   NA   Pronamice   ND(0.010)   ND(0.010)   NA   NA   NA   NA   Pyrdine   ND(0.010)   ND(0.010)   NA   NA   NA   NA   Pyrdine   ND(0.010)   ND(0.010)   NA   NA   NA   NA   Pyrdine   ND(0.010)   ND(0.010)   NA   NA   NA   NA   Thionazir   ND(0.00000000000000000000000000000000000	entachloroethane	A	NA	NA	NA	ND(0.010)	ND(0.010)	Pentachloroethane
Phensettern	entachloronitrober	A	NA	NA	NA	ND(0.010)	ND(0.010)	Pentachloronitrobenzene
Phenanthrene   ND(0.010)   ND(0.010)   NA   NA   NA   Phenanthrene   ND(0.010)   ND(0.010)   NA   NA   NA   NA   Phenanthrene   ND(0.010)   ND(0.010)   NA   NA   NA   NA   Pronamice   ND(0.010)   ND(0.010)   NA   NA   NA   NA   NA   Pronamice   ND(0.010)   ND(0.010)   NA   NA   NA   NA   Pronamice   ND(0.000000)   NA   NA   NA   NA   Pronamice   ND(0.00010)   ND(0.010)   NA   NA   NA   NA   Pronamice   ND(0.000010)   NA   NA   NA   NA   NA   NA   NA   N	entachlorophenol	A	NA	NA	NA	ND(0.050)	ND(0.050)	Pentachlorophenol
Phenol   ND(0.010)   ND(0.010)   NA   NA   NA   Phenol	enacetin	A	NA	NA	NA	ND(0.010) J	ND(0.010)	Phenacetin
Pronamide   ND(0.010)   ND(0.010)   NA   NA   NA   Pronamide   ND(0.010)   ND(0.010)   NA   NA   NA   NA   Pyrene   ND(0.010)   ND(0.010)   NA   NA   NA   NA   Pyrene   ND(0.010)   ND(0.010)   NA   NA   NA   NA   Safrole   ND(0.010)   ND(0.010)   NA   NA   NA   NA   Safrole   ND(0.010)   ND(0.010)   NA   NA   NA   NA   NA   NA   NA   N	nenanthrene	A	NA	NA	NA	ND(0.010)	ND(0.010)	Phenanthrene
Pyrenne	ienol	A	NA	NA	NA	ND(0.010)	ND(0.010)	Phenol
Pyridine	onamide	A	NA	NA	NA	ND(0.010)	ND(0.010)	Pronamide
Safrole							ND(0.010) J	
Thionazin   ND(0.010)   ND(0.010)   NA   NA   NA   Thionazin   Organochlorine Pesticides   Organochlorine Pestic	ridine	A	NA	NA	NA			Pyridine
Organochlorine Pesticides         Organochlorine Pesticides           4.4*-DDD         ND(0.00010)         NA         NA         NA         NA         4.4*-DDE           4.4*-DDT         ND(0.00010)         NA         NA         NA         NA         NA         4.4*-DDT           Aldrin         ND(0.000050)         NA         NA         NA         NA         AJA			NA					Safrole
4.4"-DDD	ionazin	A	NA	NA	NA	ND(0.010)	ND(0.010)	Thionazin
4.4*DDE	rganochlorine Po							Organochlorine Pesticides
4.4*DDT         ND(0.00010)         NA         NA         NA         NA         A4.4*DDT           Aldrin         ND(0.000050)         NA	4'-DDD	A	NA	NA	NA	NA	ND(0.00010)	4,4'-DDD
Aldrin	4'-DDE	A	NA	NA	NA	NA	ND(0.00010)	4,4'-DDE
Aldrin	4'-DDT	A	NA	NA	NA	NA	ND(0.00010)	4,4'-DDT
Alpha-Chlordane			NA	NA	NA	NA	ND(0.000050)	Aldrin
Alpha-Chlordane	pha-BHC	A	NA	NA	NA	NA	ND(0.000050)	Alpha-BHC
Beta-BHC	pha-Chlordane		NA		NA	NA	. ,	•
Delta-BHC								
Dieldrin								
Endosulfan   ND(0.00010) NA NA NA NA NA Endosulfa   Endosulfan   ND(0.00010) NA NA NA NA NA   NA Endosulfan   ND(0.00010) NA NA NA NA NA NA   NA Endosulfan   ND(0.00010) NA NA NA NA NA NA NA   Endosulfan   ND(0.00010) NA NA NA NA NA NA   NA Endosulfan   ND(0.00010) NA NA NA NA NA NA NA   Endrin   ND(0.00010) NA NA NA NA NA NA   NA Endrin   ND(0.00010) NA NA NA NA NA NA   NA Endrin   Endrin   ND(0.00010) NA NA NA NA NA NA   NA Endrin   ND(0.00010) NA NA NA NA NA   NA Endrin   NA   NA   NA   NA   NA   NA   NA   N				I .			,	
Endosulfan II				I .				
Endosulfan Sulfate	ndosulfan II			I .				
Endrin	ndosulfan Sulfate							
Endrin Aldehyde								
Endrin Ketone	ndrin Aldehyde							
Gamma-BHC (Lindane)   ND(0.00050)   NA	ndrin Ketone							
Gamma-Chlordane   NDIO.000050)   NA   NA   NA   NA   NA   Heptachlor	amma-BHC (Lind							
Heptachlor	amma-Chlordane			I .				
Heptachlor Epoxide				I .				
Repone	eptachlor Epoxide						. ,	•
Methoxychlor         ND(0.00050)         NA         NA         NA         NA         Methoxyc           Technical Chlordane         ND(0.00050)         NA								
Technical Chlordane				I .				
Toxaphene	echnical Chlordan							
Organophosphate Pesticides         Organophosphate           Dimethoate         ND(0.050)         NA         NA         NA         NA         Dimethoate           Disulfoton         ND(0.010)         NA         NA         NA         NA         NA         Disulfoton           Ethyl Parathion         ND(0.010)         NA         NA         NA         NA         NA         Ethyl Parathion         ND(0.050)         NA         NA         NA         NA         NA         NA         MEthyl Parathion         ND(0.010)         NA         NA         NA         NA         NA         MEthyl Parathion         ND(0.010)         NA         NA         NA         NA         NA         NA         MEthyl Parathion         ND(0.010)         NA         NA         NA         NA         NA         MEthyl Parathion         ND(0.010)         NA         NA         NA         NA         NA         MEthyl Parathion         ND(0.010)         NA         NA <t< td=""><td></td><td></td><td></td><td>I .</td><td></td><td></td><td></td><td></td></t<>				I .				
Dimethoate   ND(0.050)   NA	ganophosphate						112 (0.0010)	•
Disulfoton   ND(0.010)   NA			NΔ	NΔ	NΔ	NΔ	ND(0.050)	
Ethyl Parathion         ND(0.010)         NA         NA         NA         NA         Ethyl Par           Famphur         ND(0.050)         NA         NA         NA         NA         NA         Famphur           Methyl Parathion         ND(0.010)         NA         NA         NA         NA         NA         Methyl Par           Phorate         ND(0.010)         NA         NA         NA         NA         NA         Phorate           Sulfotep         ND(0.010)         NA         NA         NA         NA         NA         NA         NA         Sulfotep         ND(0.010)         NA				I .				
Famphur								
Methyl Parathion         ND(0.010)         NA         NA         NA         NA         Methyl Parathion           Phorate         ND(0.010)         NA         NA         NA         NA         NA         NA         Phorate           Sulfotep         ND(0.010)         NA								
Phorate								
Sulfotep								
None Detected							. ,	
Herbicides				I .			. ,	
2,4,5-T         ND(0.0020)         NA         NA         NA         NA         2,4,5-T           2,4,5-TP         ND(0.0020)         NA         NA         NA         NA         NA         2,4,5-TP           2,4-D         ND(0.010)         NA         NA         NA         NA         NA         2,4-D           Dinoseb         ND(0.0010)         NA         NA         NA         NA         NA         Dinoseb           None Detected          NA         NA         NA         NA         NA         NA         No			INA	INA	IVA	IVA		
2,4,5-TP         ND(0.0020)         NA         NA         NA         NA         2,4,5-TP           2,4-D         ND(0.010)         NA         NA         NA         NA         NA         2,4-D           Dinoseb         ND(0.0010)         NA         NA         NA         NA         NA         Dinoseb           None Detected          NA         NA         NA         NA         NA         NA         None Detected         Furans         Furans         Furans         TCDFs (total)         NA         TCDFs (total)         NA         NA <td< td=""><td></td><td></td><td>l NIA</td><td>I NA</td><td>NIA</td><td>NIA</td><td>ND(0,0000)</td><td></td></td<>			l NIA	I NA	NIA	NIA	ND(0,0000)	
Z,4-D         ND(0.010)         NA         NA         NA         NA         2,4-D           Dinoseb         ND(0.0010)         NA         NA         NA         NA         NA         Dinoseb           None Detected          NA         NA         NA         NA         NA         NA         None Detected           Furans         Furans         Furans         Furans         Furans         Furans         1,2,3,7,8-TCDF         ND(0.0000000073 ND(0.0000000033) NA         NA         NA         NA         NA         TCDFs (total)         NA         NA         NA         NA         TCDFs (total)         NA				I .			. ,	
Dinoseb         ND(0.0010)         NA         NA         NA         NA         NA         Dinoseb           None Detected          NA         TCDFs (total)         NA         NA </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td>							,	
None Detected          NA         NA         NA         NA         NA         NA         NOne Detected           Furans         Furans           2,3,7,8-TCDF         ND(0.0000000073 ND(0.0000000033)         NA         NA         NA         NA         2,3,7,8-TCDFs (total)         ND(0.0000000073 ND(0.0000000033)         NA         NA         NA         NA         TCDFs (total)         NA         PeCDFs         NA         PeCDFs							()	*
Furans           2,3,7,8-TCDF         ND(0.000000073 ND(0.0000000033)         NA         NA         NA         2,3,7,8-TCDF (total)           TCDFs (total)         ND(0.0000000073 ND(0.0000000033)         NA         NA         NA         NA         TCDFs (total)           1,2,3,7,8-PeCDF         ND(0.0000000025 ND(0.000000037)         NA         NA         NA         NA         1,2,3,7,8-PeCDF           2,3,4,7,8-PeCDF         ND(0.0000000025 ND(0.0000000039)         NA         NA         NA         NA         NA         PeCDFs           PeCDFs (total)         0.0000000043 I ND(0.0000000037)         NA         NA         NA         NA         PeCDFs				I .			. ,	
2,3,7,8-TCDF         ND(0.0000000073 ND(0.0000000033)         NA         NA         NA         2,3,7,8-T           TCDFs (total)         ND(0.0000000073 ND(0.0000000033)         NA         NA         NA         NA         TCDFs (total)           1,2,3,7,8-PeCDF         ND(0.0000000025 ND(0.0000000037)         NA         NA         NA         NA         1,2,3,7,8-PeCDF           2,3,4,7,8-PeCDF         ND(0.0000000025 ND(0.0000000039)         NA         NA         NA         NA         NA         PeCDFs           PeCDFs (total)         0.0000000043 I ND(0.0000000037)         NA         NA         NA         NA         PeCDFs			INA	NA	INA	INA	-	
TCDFs (total)         ND(0.0000000073 ND(0.0000000033)         NA         NA         NA         TCDFs (total)           1,2,3,7,8-PeCDF         ND(0.0000000025 ND(0.0000000037)         NA         NA         NA         NA         1,2,3,7,8-PeCDF           2,3,4,7,8-PeCDF         ND(0.0000000025 ND(0.0000000039)         NA         NA         NA         NA         NA         NA         PeCDFs (total)         NA         PeCDFs						h 15 /o o o o o o o o o o	ND /0 00000000	
1,2,3,7,8-PeCDF         ND(0.0000000025 ND(0.0000000037)         NA         NA         NA         1,2,3,7,8           2,3,4,7,8-PeCDF         ND(0.0000000025 ND(0.0000000039)         NA         NA         NA         NA         NA         2,3,4,7,8           PeCDFs (total)         0.0000000043 I         ND(0.0000000037)         NA         NA         NA         NA         PeCDFs								
2,3,4,7,8-PeCDF         ND(0.0000000025 ND(0.0000000039)         NA         NA         NA         2,3,4,7,8-PeCDFs (total)           PeCDFs (total)         0.0000000043 I ND(0.0000000037)         NA         NA         NA         NA         PeCDFs	. ,							
PeCDFs (total)         0.0000000043 I ND(0.0000000037)         NA         NA         NA         PeCDFs	2,3,7,8-PeCDF			I .				
, ,	3,4,7,8-PeCDF			I .		(	(	7-7 7 7
	CDFs (total)							,
	2,3,4,7,8-HxCDF			I .				
1 1-1-1	2,3,6,7,8-HxCDF							
	2,3,7,8,9-HxCDF							1 1-1 1-1-
	3,4,6,7,8-HxCDF							
HxCDFs (total)         ND(0.0000000032         0.000000048         NA         NA         NA         HxCDFs	CDFs (total)	A	NA	NA NA	NA	0.000000048	ND(0.00000000032)	HxCDFs (total)

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Table B-1 Baseline Monitorii

Baseline Assessment Final Report And Long Term Monitoring Program Proposal Groundwater Managment Area 2
General Electric Company - Pittsfield, Massachusetts
(Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:		GMA2-9 10/28/03	GMA2-9 05/25/04	GMA2-9 11/03/05	GMA2-9 04/14/06	Parameter
1,2,3,4,6,7,8-HpCDF			ND(0.0000000026)	NA	NA	NA	1,2,3,4,6,7,8-HpCD
1,2,3,4,7,8,9-HpCDF			ND(0.0000000033)	NA	NA	NA	1,2,3,4,7,8,9-HpCD
HpCDFs (total)			ND(0.00000000026)	NA	NA	NA	HpCDFs (total)
OCDF		ND(0.0000000078	ND(0.0000000060)	NA	NA	NA	OCDF
Dioxins			•			•	Dioxins
2,3,7,8-TCDD		ND(0.0000000076	ND(0.0000000040)	NA	NA	NA	2,3,7,8-TCDD
TCDDs (total)		ND(0.0000000076	ND(0.0000000040	NA	NA	NA	TCDDs (total)
1,2,3,7,8-PeCDD		ND(0.0000000037	ND(0.0000000054)	NA	NA	NA	1,2,3,7,8-PeCDD
PeCDDs (total)		ND(0.0000000039	ND(0.0000000054)	NA	NA	NA	PeCDDs (total)
1,2,3,4,7,8-HxCDD		ND(0.0000000038	ND(0.0000000054)	NA	NA	NA	1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD		ND(0.0000000034	ND(0.0000000049)	NA	NA	NA	1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD		ND(0.0000000038	ND(0.0000000049)	NA	NA	NA	1,2,3,7,8,9-HxCDD
HxCDDs (total)			ND(0.0000000049)	NA	NA	NA	HxCDDs (total)
1,2,3,4,6,7,8-HpCDD			ND(0.0000000033	NA	NA	NA	1,2,3,4,6,7,8-HpCD
HpCDDs (total)		ND(0.0000000054	ND(0.0000000033	NA	NA	NA	HpCDDs (total)
OCDD		ND(0.000000015)	ND(0.0000000033	NA	NA	NA	OCDD
Total TEQs (WHO TE	EFs)	0.0000000080	0.000000012	NA	NA	NA	Total TEQs (WHO
Inorganics-Unfiltere		<u> </u>	<u>.</u>				Inorganics-Unfilte
Antimony		ND(0.0600)	ND(0.0600)	NA	NA	NA	Antimony
Arsenic		ND(0.0100)	ND(0.0100) J	NA	NA NA	NA	Arsenic
Barium		0.0110 B	0.0150 B	NA	NA NA	NA	Barium
Beryllium		ND(0.00100)	ND(0.00100)	NA	NA	NA	Beryllium
Cadmium		ND(0.00500)	ND(0.00500)	NA	NA NA	NA	Cadmium
Chromium		0.00200 B	ND(0.0100)	NA	NA NA	NA	Chromium
Cobalt		ND(0.0500)	ND(0.0500)	NA	NA NA	NA	Cobalt
Copper		ND(0.025)	ND (0.025)	NA	NA NA	NA	Copper
Cyanide		ND(0.0100)	ND(0.0100)	NA	NA NA	NA	Cyanide
Lead		ND(0.00300) J	ND(0.00300) J	NA	NA NA	NA	Lead
Mercury		ND(0.000200)	ND(0.000200)	NA	NA NA	NA	Mercury
Nickel		ND(0.0400)	ND(0.0400)	NA	NA NA	NA	Nickel
Selenium		ND(0.00500) J	ND(0.00500) J	NA	NA	NA	Selenium
Silver		ND(0.00500)	ND(0.00500)	NA	NA NA	NA	Silver
Sulfide		ND(5.00)	ND(5.00)	NA	NA NA	NA	Sulfide
Thallium		ND(0.0100)	ND(0.0100)	NA NA	NA NA	NA NA	Thallium
Tin		ND(0.0300)	ND(0.0300)	NA	NA NA	NA	Tin
Vanadium		ND(0.0500)	ND(0.0500)	NA NA	NA NA	NA NA	Vanadium
Zinc		ND(0.020)	ND (0.020)	NA NA	NA NA	NA NA	Zinc
Inorganics-Filtered		112 (0.020)	112 (0.020)				Inorganics-Filtered
Antimony		ND(0.0600)	ND(0.0600)	NA	NA	NA	Antimony
Arsenic		ND(0.0100)	ND(0.0100) J	NA NA	NA NA	NA	Arsenic
Barium		0.0120 B	0.0150 B	NA NA	NA NA	NA	Barium
Beryllium		0.000410 B	ND(0.00100)	NA NA	NA NA	NA	Beryllium
Cadmium		ND(0.00500)	ND(0.00500)	NA NA	NA NA	NA	Cadmium
Chromium		ND(0.00300)	ND(0.00300)	NA NA	NA NA	NA NA	Chromium
Cobalt		ND(0.0500)	ND(0.0500)	NA NA	NA NA	NA NA	Cobalt
Copper		ND(0.0350)	ND(0.0250)	NA NA	NA NA	NA NA	Copper
Cyanide		ND(0.023)	ND(0.0230)	ND(0.0100)	ND(0.0100) [ND(0.0100)]	NA NA	Cyanide
Lead		ND(0.00300) J	ND(0.00300) J	NA	NA	NA NA	Lead
		ND(0.00300) 3	ND(0.00300) 3	NA NA	NA NA	NA NA	
Mercury Nickel		ND(0.000200)	ND(0.000200)	NA NA	NA NA	NA NA	Mercury Nickel
Selenium		ND(0.0400)	0.00490 J	NA NA	NA NA	NA NA	Selenium
		ND(0.00500) 3	ND(0.00500)	NA NA	NA NA	NA NA	
Silver Thallium		ND(0.00500)	ND(0.00500)	NA NA	NA NA	NA NA	Silver Thallium
Tin		ND(0.0100)	ND(0.0100)	NA NA		NA NA	Tin
Vanadium		ND(0.0300)	ND(0.0300)	NA NA	NA NA	NA NA	Vanadium
						1	
Zinc		ND(0.020)	ND(0.020)	NA	NA	NA	Zinc

Sample ID: Date Collected:	J-1R 04/15/02	J-1R 11/05/02	J-1R 04/28/03	J-1R 10/24/03	OJ-MW-2 04/15/02
- 11	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
ethane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
ne	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
ethane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
ne	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010) J	ND(0.0010)
ane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
ropropane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
е	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.20)	ND(0.20) J	ND(0.20)	ND(0.20) J	ND(0.20)
	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010) J	ND(0.010)
ene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
ther	ND(0.0050)	ND(0.0050) J	ND(0.0050) J	ND(0.0050)	ND(0.0050)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
one	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)
	ND(0.10)	ND(0.10) J	ND(0.10) J	ND(0.10) J	ND(0.10)
	ND(0.10)	ND(0.10) J	ND(0.10) J	ND(0.10)	ND(0.10)
	ND(0.0050)	ND(0.0050) J	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
ane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) J	ND(0.0050)
	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
de	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
pene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
nane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) J	ND(0.0050)
thane	ND(0.0050)	ND(0.0050)	ND(0.0050) J	ND(0.0050)	ND(0.0050)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.10)	ND(0.10) J	ND(0.10) J	ND(0.10) J	ND(0.10)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
е	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010) J	ND(0.010)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020) J	ND(0.0020)
	ND(0.0050)	0.0029 J	ND(0.0050)	0.00067 J	ND(0.0050)
thene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
ropene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
2-butene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	0.0032 J	0.0084	0.0020 J	0.0021 J	0.0029 J
ane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
	ND(0.0020)	0.0014 J	ND(0.0020)	ND(0.0020)	ND(0.0020)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	0.0032 J	0.013 J	0.0020 J	0.0028 J	0.0029 J

Sample ID: Date Collected:	J-1R 04/15/02	J-1R 11/05/02	J-1R 04/28/03	J-1R 10/24/03	OJ-MW-2 04/15/02
	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
	ND(0.000065)	ND(0.000065)	0.00024	0.00036	ND(0.000065)
	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	0.000031 J
	ND(0.000065)	ND(0.000065)	0.00024	0.00036	0.000031 J
	ND(0,000005)	ND(0.0000CF) I	ND(0.0000CE)	ND(0,0000CE)	ND(0.00000E)
	ND(0.000065)	ND(0.000065) J ND(0.000065) J	ND(0.000065)	ND(0.000065)	ND(0.000065)
	ND(0.000065)		ND(0.000065)	ND(0.000065)	ND(0.000065)
	ND(0.000065)	ND(0.000065) J	ND(0.000065)	ND(0.000065)	ND(0.000065)
	ND(0.000065)	ND(0.000065) J	ND(0.000065)	ND(0.000065)	ND(0.000065)
	ND(0.000065)	ND(0.000065) J	ND(0.000065) 0.00010	ND(0.000065) 0.00022	ND(0.000065)
	ND(0.000065) ND(0.000065)	ND(0.000065) J ND(0.000065) J	ND(0.000065)	ND(0.00065)	ND(0.000065) ND(0.000065)
	ND(0.000065)	ND(0.000065) J	` '	` '	ND(0.000065)
nics	ND(0.00005)	ND(0.000005) J	0.00010	0.00022	ND(0.00005)
penzene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ene	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
e	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ne	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
e	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ie	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
e	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
-	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
phenol	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ol	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ol	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.050)	ND(0.050)	ND(0.050) J	ND(0.050)	ND(0.050)
	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
ene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ie	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ie	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.050)	ND(0.050) J	ND(0.050) J	ND(0.050)	ND(0.050)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ne	ND(0.020)	ND(0.020)	ND(0.020) J	ND(0.020)	ND(0.020)
ine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ne	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.050)	ND(0.050)	ND(0.050) J	ND(0.050)	ND(0.050)
phenol	ND(0.050)	ND(0.050)	ND(0.050) J	ND(0.050)	ND(0.050)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
enylether	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
henol	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
and ather	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
nylether	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.050)	ND(0.050)	ND(0.050) J	ND(0.050)	ND(0.050)
	ND(0.050)	ND(0.050)	ND(0.050)	R	ND(0.050)

Sample ID: Date Collected:	J-1R 04/15/02	J-1R 11/05/02	J-1R 04/28/03	J-1R 10/24/03	OJ-MW-2 04/15/02
xide	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)
)	ND(0.010)	ND(0.010) J	ND(0.010) J	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
a)anthracene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
hylamine	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010) J	ND(0.010) J	ND(0.010)	ND(0.010)
	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020) J	ND(0.020)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
е	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
е	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.020)	ND(0.020)	ND(0.020) J	ND(0.020)	ND(0.020)
nethane	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ner	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
(I)ether	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
nalate	ND(0.0060)	ND(0.0060)	ND(0.0060) J	ND(0.0060)	ND(0.0060)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ate	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
_	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
e 	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
tadiene	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.020)	ND(0.020) J	ND(0.020)	ND(0.020) J	ND(0.020)
	ND(0.010)	ND(0.010) J	ND(0.010) J	ND(0.010)	ND(0.010)
ene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010) ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	, ,
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
noto	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
nate	ND(0.010)	ND(0.010)	ND(0.010) ND(0.010)	ND(0.010)	ND(0.010) ND(0.010)
	ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010)
	ND(0.010) ND(0.010)		ND(0.010)	, ,	
ie nine	, ,	ND(0.010)	` '	ND(0.010)	ND(0.010)
nine	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)
mine	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010) J	ND(0.010) ND(0.010)	ND(0.010)
amine	, ,	, ,	` '	` '	, ,
nine	ND(0.010) ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
lamine	` '	ND(0.010)	ND(0.010)	ND(0.010) ND(0.010)	ND(0.010)
!	ND(0.010)	ND(0.010)	ND(0.010)	, ,	ND(0.010)
	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
arathiaata	ND(0.010)	ND(0.010) ND(0.010) J	ND(0.010)	ND(0.010)	ND(0.010)
orothioate	ND(0.010) ND(0.010)	ND(0.010) J ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) ND(0.010)
	(טוט,טןטאו	(טוט,ט)טאו	(טוט,טועו)	(טוט)טאו	(וויס) שווי
cs (continued)					

J-1R 04/15/02	J-1R 11/05/02	J-1R 04/28/03	J-1R 10/24/03	OJ-MW-2 04/15/02
ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
			'	ND(0.010)
` '	\ /	ND(0.010)	\ ,	ND(0.010)
. ,	` ,	, ,		ND(0.050)
	, ,		` '	ND(0.010)
				ND(0.010)
. ,	. ,		, ,	ND(0.010)
` '			\ ,	ND(0.010)
ND(0.010)	ND(0.010)	ND(0.010) J	ND(0.010)	ND(0.010)
ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
		, ,	, ,	,
ND(0.00010)	ND(0.00010)	ND(0.00010)	NA	ND(0.00010)
				ND(0.00010)
\ /	\ /	\ /		ND(0.00010)
				ND(0.000050)
, ,		, ,		ND(0.000050)
` '		` '		ND(0.000050)
				ND(0.000050)
, ,				ND(0.000050)
. ,		. ,		ND(0.00010)
		. ,		ND(0.00010)
( /	\ /	, ,		ND(0.00010)
( /	. ,	, ,		ND(0.00010)
	` '	` '		ND(0.00010)
, ,	\ /	. ,		ND(0.00010)
\ /	\ /	\ /		ND(0.00010)
\ /	\ /	\ /		ND(0.000050)
				ND(0.000050)
· · · · · · · · · · · · · · · · · · ·	. , , , , , , , , , , , , , , , , , , ,			ND(0.000050)
` '	` ,	` '		ND(0.000050)
, ,		, ,		ND(0.050)
· '	, ,			ND(0.00050)
, ,	` '			ND(0.00050)
				ND(0.0010)
112 (0.0010)	112 (0.0010)	112 (0.0010)		(0.00.0)
ND(0.050)	ND(0.050)	ND(0.050)	ΝΔ	ND(0.050)
· '	, ,			ND(0.010)
` '	· ,	' '		ND(0.010)
. ,	` ,			ND(0.050)
		, ,		ND(0.030)
				ND(0.010)
\ /	\ /			ND(0.010)
` '	` ,	` '		
		<u> </u>	14/1	
ND(0 0020)	ND(0 0030)	ND(0.0020)	NΙΛ	ND(0.0020)
	. ,			ND(0.0020)
,	. ,	` '		ND(0.0020)
· '	\ /	` '		ND(0.010) ND(0.0010)
,	, ,	, ,		ND(0.0010)
			INA	
ND(0.000000040)	ND(0.000000040)	ND(0 000000000	ND/0 000000014	0.0000000054
				0.0000000051
, ,				0.0000000051
				0.000000014 JE
				ND(0.0000000095
ND(0.0000000031) X			ND(0.00000000095)	0.000000014
	NII 771 NANAAAAAAA \	ND(0.0000000048	0.0000000095 I	0.000000012 JE
	,	\		
0.0000000034 J	ND(0.00000000062) >	ND(0.0000000043	ND(0.0000000011)	0.0000000098 J
	ND(0.00000000062) >	\	ND(0.0000000011) ND(0.0000000014)	0.0000000098 .
	ND(0.010) ND(0.010) ND(0.010) ND(0.0010) ND(0.00010) ND(0.00010) ND(0.00010) ND(0.00050) ND(0.00050) ND(0.00050) ND(0.00050) ND(0.00010) ND(0.00010) ND(0.00010) ND(0.00010) ND(0.00010) ND(0.00010) ND(0.00010) ND(0.00010) ND(0.00010) ND(0.00050) ND(0.010) ND(0.010) ND(0.010) ND(0.010) ND(0.010) ND(0.0000)	ND(0.010)   ND(0.010)   ND(0.010)   ND(0.010)   ND(0.010)   ND(0.050)   ND(0.050)   ND(0.050)   ND(0.010)   ND(0.0010)   ND(0.00010)   ND(0.00010)   ND(0.00010)   ND(0.00010)   ND(0.00010)   ND(0.00010)   ND(0.00010)   ND(0.00050)   ND(0.000050)   ND(0.00010)   ND(0.00050)   ND(0.000	ND(0.010)   ND(0.010)   ND(0.010)   ND(0.010)   ND(0.010)   ND(0.050)   ND(0.050)   ND(0.050)   ND(0.050)   ND(0.050)   ND(0.050)   ND(0.050)   ND(0.010)   ND(0.0010)   ND(0.00010)   ND(0.00010)   ND(0.00010)   ND(0.00010)   ND(0.00010)   ND(0.00010)   ND(0.00010)   ND(0.000050)   ND(0.00050)   ND(0.00000000000000000000000000000000000	NDIO.010  NDIO.010  NDIO.010  NDIO.010  NDIO.010  NDIO.010  NDIO.010  NDIO.050  NDIO.010  NDIO.00010  NDIO.00010  NDIO.00010  NDIO.00010  NDIO.00010  NDIO.00010  NDIO.00010  NDIO.00010  NDIO.000050  NDIO.000050

Sample ID:	J-1R	J-1R	J-1R	J-1R	OJ-MW-2
Date Collected:	04/15/02	11/05/02	04/28/03	10/24/03	04/15/02
		ND(0.00000000072) >			
F	0.0000000030 J			ND(0.0000000014)	0.000000000000000000000000000000000000
<u>'</u>	0.00000000000			ND(0.0000000014)	0.000000010
-	0.000000000000000000000000000000000000	ND(0.000000050)		ND(0.0000000013)	0.00000007 J
	0.0000000000000000000000000000000000000	(0.0000000000)	112 (0.000000001.1)	1.2 (0.0000000000)	0.00000002.
	ND(0.000000017)	ND(0.000000015)	ND(0.0000000074	ND(0.00000000093	0.0000000040 J
	ND(0.0000000017)			ND(0.000000000093	
-	0.0000000029 J	ND(0.0000000025)		ND(0.0000000010)	0.000000010 J
-	0.0000000029			ND(0.0000000010)	0.00000010
-	0.000000037 J	ND(0.0000000025)		ND(0.0000000017)	ND(0.0000000068) >
	0.0000000028 J	ND(0.0000000025)		ND(0.0000000015)	ND(0.0000000089) >
	ND(0.0000000026) X	ND(0.0000000025)	ND(0.0000000056	ND(0.0000000015)	ND(0.0000000037) >
	0.0000000065	ND(0.0000000030)	ND(0.0000000054	ND(0.0000000015)	ND(0.000000019) X
D	ND(0.0000000019) X	0.0000000027 J	ND(0.0000000084	ND(0.000000000071	0.000000012 J
	ND(0.0000000019) X	0.0000000043		ND(0.00000000071	0.000000012
	ND(0.0000000078) X	0.000000013 J	ND(0.000000022)	ND(0.000000022)	0.000000039 J
TEFs)	0.0000000065	0.0000000031	0.00000011	0.0000000027	0.000000022
red					
	ND(0.0600)	ND(0.0600)	ND(0.0600)	ND(0.0600)	ND(0.0600)
	ND(0.0100)	ND(0.0100)	ND(0.0100)	ND(0.0100)	ND(0.0100)
	ND(0.200)	0.0230 B	0.0270 B	0.0300 B	ND(0.200)
	ND(0.00100)	ND(0.00100)	ND(0.00100)	ND(0.00100)	ND(0.00100)
	ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)
	ND(0.0100)	ND(0.0100)	0.00110 B	ND(0.0100)	ND(0.0100)
	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)
	ND(0.0250)	ND(0.0250)	ND(0.025)	0.00140 B	ND(0.0250)
	0.00320 B	0.00270 B	ND(0.0100)	ND(0.0100)	0.00320 B
	ND(0.00300)	ND(0.00300)	ND(0.00300) J	ND(0.00300)	ND(0.00300)
	ND(0.000200)	ND(0.000230)	ND(0.000200)	ND(0.000200)	ND(0.000200)
	ND(0.0400)	ND(0.0400) ND(0.00500)	ND(0.0400)	ND(0.0400)	ND(0.0400)
	ND(0.00500) ND(0.00500)	ND(0.00500)	ND(0.00500) J ND(0.00500)	ND(0.00500) J ND(0.00500)	ND(0.00500) ND(0.00500)
	ND(0.00500) ND(5.00)	ND(5.00)	ND(0.00500)	ND(0.00500) ND(5.00)	ND(5.00)
-	ND(0.0100)	ND(0.0100) J	ND(0.0100)	ND(0.0100)	ND(0.0100)
-	ND(0.0300)	ND(0.0300)	ND(0.0300)	ND(0.0300)	ND(0.0100)
-	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)
	0.0110 B	0.0150 B	ND(0.020)	ND (0.020)	0.0360
d	0.01.02	0.0.002	112 (0.020)	112 (01020)	0.0000
<u></u>	ND(0.0600)	ND(0.0600)	ND(0.0600)	ND(0.0600)	ND(0.0600)
	ND(0.100)	ND(0.0100) J	ND(0.0100)	ND(0.0100)	ND(0.100)
	ND(0.200)	0.0220 B	0.0290 B	0.0310 B	ND(0.200)
	ND(0.00100)	ND(0.00100)	0.000420 B	ND(0.00100)	ND(0.00100)
	ND(0.0100)	ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.0100)
-	ND(0.0250)	ND(0.0100)	ND(0.0100)	ND(0.0100)	ND(0.0250)
	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)
	ND(0.100)	ND(0.0250)	ND(0.025)	ND(0.0250)	ND(0.100)
	NA	ND(0.0100)	ND(0.0100)	ND(0.0100)	NA
	ND(0.00300)	ND(0.00300)	ND(0.00300) J	ND(0.00300)	ND(0.00300)
	ND(0.000200)	ND(0.000200)	ND(0.000200)	ND(0.000200)	ND(0.000200)
	ND(0.0400)	ND(0.0400)	ND(0.0400)	ND(0.0400)	ND(0.0400)
	ND(0.00500)	ND(0.00500)	ND(0.00500) J	ND(0.00500) J	ND(0.00500)
-	ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)
	ND(0.0100)	ND(0.0100) J	ND(0.0100)	ND(0.0100)	ND(0.0100)
	ND(0.0300)	ND(0.0300)	ND(0.0300)	ND(0.0300)	ND(0.0300)
	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)
	0.00680 B	ND(0.0200) J	ND(0.020)	ND(0.020)	0.0110 B

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	MW-2 11/5-11/6/02	OJ-MW-2 10/23/03	OJ-MW-2 05/24/04
Volatile Organic	cs			
1,1,1,2-Tetrachlo	proethane	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
1,1,1-Trichloroet	hane	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
1,1,2,2-Tetrachlo	proethane	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
1,1,2-Trichloroet	hane	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
1,1-Dichloroetha	ne	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
1,1-Dichloroethe		ND(0.0010)	ND(0.0010)	ND(0.0010) [ND(0.0010)]
1,2,3-Trichloropr	opane	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
1,2-Dibromo-3-c		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
1,2-Dibromoetha	ine	ND(0.0010)	ND(0.0010)	ND(0.0010) [ND(0.0010)]
1,2-Dichloroetha	ne	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
1,2-Dichloroprop	ane	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
1,4-Dioxane		ND(0.20) J	ND(0.20) J	ND(0.20) J
2-Butanone		ND(0.010)	ND(0.010) J	ND(0.010) [ND(0.010)]
2-Chloro-1,3-but	adiene	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
2-Chloroethylving	ylether	ND(0.0050) J	ND(0.0050)	ND(0.0050) [ND(0.0050)]
2-Hexanone		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
3-Chloropropene	)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
4-Methyl-2-penta	anone	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Acetone		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Acetonitrile		ND(0.10) J	ND(0.10) J	ND(0.10) [ND(0.10)]
Acrolein		ND(0.10) J	ND(0.10)	ND(0.10) J
Acrylonitrile		ND(0.0050) J	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Benzene		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Bromodichlorom	ethane	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Bromoform		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Bromomethane		ND(0.0020)	ND(0.0020)	ND(0.0020) [ND(0.0020)]
Carbon Disulfide	1	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Carbon Tetrachle		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Chlorobenzene		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Chloroethane		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Chloroform		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Chloromethane		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
cis-1,3-Dichlorop	propene	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Dibromochlorom		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Dibromomethane	Э	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Dichlorodifluoron	nethane	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Ethyl Methacryla	ite	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Ethylbenzene		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Iodomethane		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Isobutanol		ND(0.10) J	ND(0.10) J	ND(0.10) J
Methacrylonitrile		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Methyl Methacry		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Methylene Chlor		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Propionitrile		ND(0.010)	ND(0.010)	ND(0.010) J
Styrene		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Tetrachloroether	ne	ND(0.0020)	ND(0.0020)	ND(0.0020) J
Toluene		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
trans-1,2-Dichlor	oethene	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
trans-1,3-Dichlor		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
trans-1,4-Dichlor		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Trichloroethene		0.012	0.015	0.0048 J [0.0048 J]
Trichlorofluorom	ethane	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Vinyl Acetate	-	ND(0.0050)	ND(0.0050) J	ND(0.0050) [ND(0.0050)]
Vinyl Chloride		ND(0.0020)	ND(0.0020)	ND(0.0020) [ND(0.0020)]
Xylenes (total)		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Total VOCs		0.012	0.015	0.0048 J [0.0048 J]
. 3.0 300		0.0.L	3.310	3.55.5 [0.00 10 0]

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Doromotor	Sample ID: Date Collected:	MW-2	OJ-MW-2 10/23/03	OJ-MW-2
Parameter		11/5-11/6/02	10/23/03	05/24/04
PCBs-Unfiltered		ND(0.000005)	ND(0.00005)	ND(0,00005) [ND(0,00005)]
Aroclor-1016 Aroclor-1221		ND(0.000065)	ND(0.000065)	ND(0.000065) [ND(0.000065)]
		ND(0.000065)	ND(0.000065)	ND(0.000065) [ND(0.000065)] ND(0.000065) [ND(0.000065)]
Aroclor-1232 Aroclor-1242		ND(0.000065)	ND(0.000065) ND(0.000065)	ND(0.000065) [ND(0.000065)]
Aroclor-1248		ND(0.000065) ND(0.000065)	ND(0.000065)	ND(0.000065) [ND(0.000065)]
Aroclor-1254		ND(0.000065)	ND(0.000065)	ND(0.000065) [ND(0.000065)]
Aroclor-1260		ND(0.000065)	ND(0.000065)	ND(0.000065) [ND(0.000065)]
Total PCBs		ND(0.000065)	ND(0.000065)	ND(0.000065) [ND(0.000065)]
PCBs-Filtered		14D(0.000003)	142(0.000003)	142(0.000003) [142(0.000003)]
Aroclor-1016	<u> </u>	ND(0.000065)	ND(0.000065)	ND(0.000065) [ND(0.000065)]
Aroclor-1016 Aroclor-1221		ND(0.000065)	ND(0.000065)	ND(0.000065) [ND(0.000065)]
Aroclor-1232		ND(0.000065)	ND(0.000065)	ND(0.000065) [ND(0.000065)]
Aroclor-1232 Aroclor-1242		ND(0.000065)	ND(0.000065)	ND(0.000065) [ND(0.000065)]
Aroclor-1248		ND(0.000065)	ND(0.000065)	ND(0.000065) [ND(0.000065)]
Aroclor-1254		ND(0.000065)	ND(0.000065)	ND(0.000065) [ND(0.000065)]
Aroclor-1260		ND(0.000065)	ND(0.000065)	ND(0.000065) [ND(0.000065)]
Total PCBs		ND(0.000065)	ND(0.000065)	ND(0.000065) [ND(0.000065)]
Semivolatile Org	ionico	ND(0.000003)	ND(0.000083)	ND(0.000063) [ND(0.000063)]
		ND(0.040)	ND(0.040)	ND(0.040) [ND(0.040)]
1,2,4,5-Tetrachlo		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
1,2,4-Trichlorobe		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
,		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
1,2-Diphenylhydr		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
1,3,5-Trinitrobenz		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
1,3-Dichlorobenz		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
1,3-Dinitrobenzer		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
1,4-Dichlorobenz		ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]
, i		ND(0.010)		
1-Naphthylamine 2,3,4,6-Tetrachlo		ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]
2,4,5-Trichloroph		ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) [ND(0.010)]
2,4,6-Trichloroph		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
2,4-Dichlorophen		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
2,4-Dimethylpher		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
2,4-Dinitrophenol		ND(0.050)	ND(0.050)	ND(0.050) [ND(0.050)]
2,4-Dinitrophenol		ND(0.030)	ND(0.030)	ND(0.030) [ND(0.030)]
2,6-Dichlorophen		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
2,6-Dinitrotoluene		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
2-Acetylaminofluc		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
2-Chloronaphthal		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
2-Chlorophenol	0.10	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
2-Methylnaphthal	ene	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
2-Methylphenol		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
2-Naphthylamine		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
2-Nitroaniline		ND(0.050)	ND(0.050)	ND(0.050) [ND(0.050)]
2-Nitrophenol		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
2-Picoline		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
3&4-Methylpheno	ol	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
3,3'-Dichlorobenz		ND(0.020)	ND(0.020)	ND(0.020) [ND(0.020)]
3,3'-Dimethylben		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
3-Methylcholanth	rene	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
3-Nitroaniline		ND(0.050)	ND(0.050)	ND(0.050) [ND(0.050)]
4,6-Dinitro-2-met	hylphenol	ND(0.050)	ND(0.050)	ND(0.050) J
4-Aminobiphenyl		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
4-Bromophenyl-p	henylether	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
4-Chloro-3-Methy	rlphenol	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
4-Chloroaniline		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
4-Chlorobenzilate	)	ND(0.010)	ND(0.010)	ND(0.010) J
4-Chlorophenyl-p	henylether	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
4-Nitroaniline		ND(0.050)	ND(0.050)	ND(0.050) [ND(0.050)]
4-Nitrophenol		ND(0.050)	ND(0.050)	ND(0.050) J
0 ' 1 '' 0	janics (continued)			

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

4-Nitroquinoline-1	Date Collected:	11/5-11/6/02	10/23/03	OJ-MW-2 05/24/04
4 51 11	-oxide	ND(0.010)	ND(0.010)	ND(0.010) J
4-Phenylenediam	ine	ND(0.010) J	ND(0.010)	ND(0.010) [ND(0.010)]
5-Nitro-o-toluidine	)	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
7,12-Dimethylben		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
a,a'-Dimethylpher	nethylamine	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Acenaphthene		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Acenaphthylene		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Acetophenone		ND(0.010) J	ND(0.010)	ND(0.010) [ND(0.010)]
Aniline		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Anthracene		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Aramite		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Benzidine		ND(0.020)	ND(0.020) J	ND(0.020) [ND(0.020)]
Benzo(a)anthrace	ene	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Benzo(a)pyrene		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Benzo(b)fluoranth		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Benzo(g,h,i)peryle		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Benzo(k)fluoranth	nene	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Benzyl Alcohol	- A 11	ND(0.020)	ND(0.020)	ND(0.020) [ND(0.020)]
bis(2-Chloroethox		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
bis(2-Chloroethyl)		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
bis(2-Chloroisopro		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
bis(2-Ethylhexyl)p		ND(0.0060)	ND(0.0060)	ND(0.0060) [ND(0.0060)]
Butylbenzylphthal	late	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Chrysene		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Diallate		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Dibenzo(a,h)anth	racene	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Dibenzofuran		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Diethylphthalate		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Dimethylphthalate		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Di-n-Butylphthala Di-n-Octylphthala		ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]
Diphenylamine	le	ND(0.010) ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Ethyl Methanesul	fonata	ND(0.010) ND(0.010) J	ND(0.010) ND(0.010)	ND(0.010) [ND(0.010)] ND(0.010) [ND(0.010)]
Fluoranthene	ionate	ND(0.010) 3	ND(0.010)	ND(0.010) [ND(0.010)]
Fluorene		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Hexachlorobenze	ine	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Hexachlorobutadi		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.0010)]
Hexachlorocyclop		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Hexachloroethane		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Hexachlorophene		ND(0.020) J	ND(0.020) J	ND(0.020) [ND(0.020)]
Hexachloroproper		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Indeno(1,2,3-cd)p		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Isodrin	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Isophorone		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Isosafrole		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Methapyrilene		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Methyl Methanesi	ulfonate	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Naphthalene		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Nitrobenzene		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
N-Nitrosodiethyla	mine	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
N-Nitrosodimethy	lamine	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
N-Nitroso-di-n-but	tylamine	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
N-Nitroso-di-n-pro	opylamine	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
N-Nitrosodipheny	lamine	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
N-Nitrosomethyle	thylamine	ND(0.010)	ND(0.010)	ND(0.010) J
N-Nitrosomorphol		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
N-Nitrosopiperidir		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
N-Nitrosopyrrolidi	ne	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
o,o,o-Triethylphos	sphorothioate	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
o-Toluidine		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Semivolatile Org	janics (continued)			
p-Dimethylaminoa	azobenzene	ND(0.010)	ND(0.010)	ND(0.010) J

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

	Sample ID:	MW-2	OJ-MW-2	OJ-MW-2
Parameter	Date Collected:	11/5-11/6/02	10/23/03	05/24/04
Pentachlorobenz		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Pentachloroethar		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Pentachloronitrol		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Pentachlorophen	ol	ND(0.050)	ND(0.050)	ND(0.050) [ND(0.050)]
Phenacetin		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Phenanthrene		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Phenol		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Pronamide Pyrene		ND(0.010) ND(0.010)	ND(0.010) ND(0.010)	ND(0.010) J ND(0.010) [ND(0.010)]
Pyridine		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Safrole		ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]
Thionazin		ND(0.010) ND(0.010) J	ND(0.010)	ND(0.010) [ND(0.010)]
Organochlorine	Posticidos	140(0.010) 3	145(0.010)	145(0.010) 3
4.4'-DDD	resticides	ND(0.00010)	NA	NA
4,4'-DDE		ND(0.00010)	NA NA	NA NA
4,4'-DDT		ND(0.00010)	NA NA	NA NA
Aldrin		ND(0.00010)	NA NA	NA NA
Alpha-BHC		ND(0.000050)	NA NA	NA NA
Alpha-Chlordane	,	ND(0.000050)	NA NA	NA NA
Beta-BHC	,	ND(0.000050)	NA NA	NA NA
Delta-BHC		ND(0.000050)	NA NA	NA NA
Dieldrin		ND(0.00010)	NA NA	NA NA
Endosulfan I		ND(0.00010)	NA	NA NA
Endosulfan II		ND(0.00010)	NA	NA
Endosulfan Sulfa	ite	ND(0.00010)	NA	NA
Endrin		ND(0.00010)	NA	NA
Endrin Aldehyde		ND(0.00010)	NA	NA
Endrin Ketone		ND(0.00010)	NA	NA
Gamma-BHC (Li	ndane)	ND(0.000050)	NA	NA
Gamma-Chlorda	ne	ND(0.000050)	NA	NA
Heptachlor		ND(0.000050)	NA	NA
Heptachlor Epox	ide	ND(0.000050)	NA	NA
Kepone		ND(0.050)	NA	NA
Methoxychlor		ND(0.00050)	NA	NA
Technical Chlord	lane	ND(0.00050)	NA	NA
Toxaphene		ND(0.0010)	NA	NA
Organophospha	ate Pesticides			
Dimethoate		ND(0.050)	NA	NA
Disulfoton		ND(0.010)	NA	NA
Ethyl Parathion		ND(0.010)	NA	NA
Famphur		ND(0.050)	NA	NA
Methyl Parathion		ND(0.010)	NA NA	NA NA
Phorate		ND(0.010)	NA NA	NA NA
Sulfotep		ND(0.010)	NA NA	NA NA
None Detected			NA	NA
Herbicides	1	ND(0.0000)	114	
2,4,5-T		ND(0.0020)	NA NA	NA NA
2,4,5-TP		ND(0.0020)	NA NA	NA NA
2,4-D		ND(0.010)	NA NA	NA NA
Dinoseb		ND(0.0010)	NA NA	NA NA
None Detected Furans			NA	NA
		ND(0.00000000000)	ND(0.0000000007)	ND(0.000000042) [ND(0.000000044)]
2,3,7,8-TCDF TCDFs (total)		ND(0.00000000098)	ND(0.0000000087)	ND(0.0000000012) [ND(0.0000000011)] ND(0.0000000012) [ND(0.0000000011)]
\ /		ND(0.00000000098)	ND(0.0000000087)	
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF		0.000000010 J	ND(0.000000014) ND(0.000000014)	ND(0.0000000023) [ND(0.0000000025)] ND(0.0000000023) [ND(0.0000000025)]
PeCDFs (total)		ND(0.000000017) X 0.00000011	ND(0.000000014)	0.00000000023) [ND(0.0000000025)]
1.2.3.4.7.8-HxCD	)E	0.00000011 0.000000013 J	ND(0.000000014)	ND(0.000000028 3 [ND(0.0000000025)]
1,2,3,4,7,8-HxCE		0.0000000013 J	ND(0.000000011)	ND(0.000000023) [ND(0.000000025)]
1,2,3,7,8,9-HxCE		ND(0.000000024)	ND(0.000000011)	ND(0.0000000023) [ND(0.0000000025)]
2,3,4,6,7,8-HxCD		0.0000000024)	ND(0.000000014)	ND(0.0000000023) [ND(0.0000000025)]
HxCDFs (total)		0.0000000133	ND(0.000000012)	0.0000000096 J [ND(0.0000000025)]
		5.50000017	= (3.0000000011)	3.0000000000000000000000000000000000000

Table B-1
Baseline Monitoring Program Groundwater Analytical Results

Sample	e ID: MW-2	OJ-MW-2	OJ-MW-2
Parameter Date Collect	cted: 11/5-11/6/02	10/23/03	05/24/04
1,2,3,4,6,7,8-HpCDF	0.000000051 J	0.000000050	0.0000000094 J [0.0000000026 J]
1,2,3,4,7,8,9-HpCDF	ND(0.000000024)	ND(0.000000014)	ND(0.0000000023) [ND(0.0000000025)]
HpCDFs (total)	0.00000016	0.000000050	0.000000032 J [0.0000000026 J]
OCDF	0.00000027 J	0.00000023	0.000000047 J [0.0000000086 J]
Dioxins			
2,3,7,8-TCDD	ND(0.000000014)	ND(0.00000000088)	ND(0.00000000094) [ND(0.0000000011)]
TCDDs (total)	ND(0.000000016)	ND(0.00000000088)	ND(0.0000000026) [ND(0.0000000027)]
1,2,3,7,8-PeCDD	ND(0.000000012) X	ND(0.000000012)	ND(0.0000000023) [ND(0.0000000025)]
PeCDDs (total)	ND(0.000000027)	ND(0.000000012)	ND(0.0000000031) [ND(0.0000000035)]
1,2,3,4,7,8-HxCDD	ND(0.000000026)	ND(0.000000011)	ND(0.0000000023) [ND(0.0000000031)]
1,2,3,6,7,8-HxCDD	0.000000019 J	ND(0.000000010)	ND(0.0000000023) [ND(0.0000000028)]
1,2,3,7,8,9-HxCDD	0.000000019 J	ND(0.000000010)	ND(0.0000000023) [ND(0.0000000030)]
HxCDDs (total)	0.000000037	ND(0.000000010)	0.0000000050 J [ND(0.0000000045)]
1,2,3,4,6,7,8-HpCDD	0.00000024 J	ND(0.0000000061) X	0.000000042 J [0.0000000091 J]
HpCDDs (total)	0.0000011	ND(0.0000000083)	0.00000022 [0.000000041 J]
OCDD	0.0000024	ND(0.000000072)	0.00000053 [0.00000010]
Total TEQs (WHO TEFs)	0.000000032	0.000000020	0.0000000037 [0.0000000036]
Inorganics-Unfiltered			
Antimony	ND(0.0600)	ND (0.060)	ND(0.0600) [ND(0.0600)]
Arsenic	ND(0.0100)	ND(0.0100)	ND(0.0100) [ND(0.0100)]
Barium	0.140 B	0.140 B	0.110 B [0.120 B]
Beryllium	ND(0.00100)	ND(0.00100)	ND(0.00100) [ND(0.00100)]
Cadmium	ND(0.00500)	ND(0.00500)	0.00180 B [0.00190 B]
Chromium	ND(0.0100)	ND(0.0100)	ND(0.0100) [0.00150 B]
Cobalt	0.00230 B	ND(0.0500)	ND(0.0500) [0.00180 B]
Copper	0.00910 B	0.00330 B	ND(0.025)
Cyanide	ND(0.0100)	ND(0.0100)	ND(0.0100) [0.00400 B]
Lead	0.0110	ND(0.00300)	ND(0.00300) [ND(0.00300)]
Mercury	ND(0.000260)	ND(0.000200)	ND(0.000200) [ND(0.000200)]
Nickel	0.00330 B	0.00360 B	0.00250 B [0.00310 B]
Selenium	ND(0.00500)	ND(0.00500) J	ND(0.00500) [ND(0.00500)]
Silver	ND(0.00500)	ND(0.00500)	ND(0.00500) [0.00120 B]
Sulfide	NA	ND(5.00)	ND(5.00) [ND(5.00)]
Thallium	ND(0.0100) J	ND(0.0100)	ND(0.0100) J
Tin	ND(0.0300)	ND(0.0300)	ND(0.0300) [ND(0.0300)]
Vanadium	0.00300 B	ND(0.0500)	ND(0.0500) [ND(0.0500)]
Zinc	0.110	0.0650 J	0.130 [0.130]
Inorganics-Filtered			
Antimony	0.00510 B	ND(0.0600)	ND(0.0600) [ND(0.0600)]
Arsenic	ND(0.0100) J	ND(0.0100)	ND(0.0100) [ND(0.0100)]
Barium	0.130 B	0.140 B	0.120 B [0.120 B]
Beryllium	ND(0.00100)	ND(0.00100)	ND(0.00100) [ND(0.00100)]
Cadmium	ND(0.00500)	ND(0.00500)	0.00190 B [0.00140 B]
Chromium	ND(0.0100)	ND(0.0100)	ND(0.0100) [ND(0.0100)]
Cobalt	0.00290 B	ND(0.0500)	ND(0.0500) [ND(0.0500)]
Copper	ND(0.0250)	0.00570 B	0.00450 B [0.00350 B]
Cyanide	0.00260 B	ND(0.0100)	ND(0.0100) [ND(0.0100)]
Lead	ND(0.00300)	ND(0.00300)	ND(0.00300) [ND(0.00300)]
Mercury	ND(0.000200)	ND(0.000200)	ND(0.000200) [ND(0.000200)]
Nickel	ND(0.0400)	0.00370 B	0.00300 B [0.00320 B]
Selenium	ND(0.00500)	ND(0.00500) J	ND(0.00500) [ND(0.00500)]
Silver	ND(0.00500)	ND(0.00500)	ND(0.00500) [ND(0.00500)]
Thallium	ND(0.0100) J	ND(0.0100)	ND(0.0100) J
Tin	ND(0.0300)	ND(0.0300)	ND(0.0300) [ND(0.0300)]
Vanadium	ND(0.0500)	ND(0.0500)	ND(0.0500) [ND(0.0500)]
Zinc	0.0520 J	0.0710 J	0.130 [0.120]

# Table B-1 Baseline Monitoring Program Groundwater Analytical Results

Baseline Assessment Final Report And Long Term Monitoring Program Proposal Groundwater Managment Area 2
General Electric Company - Pittsfield, Massachusetts
(Results are presented in parts per million, ppm)

#### Notes:

- Samples were collected by ARCADIS BBL and submitted to SGS Environmental Services, Inc. for analysis of PCBs and Appendix IX+3 constituents.
- Samples have been validated as per GE's approved Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP).
- 3. NA Not Analyzed.
- $\overset{4}{\phantom{}_{-}}$  ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 5 Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health Organization (WHO) and published by Van den Berg et al. in Environmental Health Perspectives 106(2), December 1998.

#### Data Qualifiers:

Organics (volatiles, PCBs, semivolatiles, pesticides, herbicides, dioxin/furans)

- B Analyte was also detected in the associated method blank.
- I Polychlorinated Diphenyl Ether (PCDPE) Interference.
- J Indicates that the associated numerical value is an estimated concentration.
- X Estimated maximum possible concentration.
- R Data was rejected due to a deficiency in the data generation process.

#### Inorganics

- B Indicates an estimated value between the instrument detection limit (IDL) and (PQL).
- J Indicates that the associated numerical value is an estimated concentration.

Table B-2 Summary Of Historical Groundwater Analytical Results - Well GMA2-1

Sample ID: Parameter Date Collected:	Method 1 GW-3 Standards	MCP UCL for GroundWater	Detection Frequency	Minimum Detect	Maximum Detect	Median Value	Arithmetic Average	Geometric Mean	Standard Deviation
Volatile Organics									
Tetrachloroethene	30	100	1/4	0.0022	0.0022	0.00100	0.00130	0.00122	0.000600
Toluene	4	80	1/4	0.0013	0.0013	0.00250	0.00220	0.00212	0.000600
Trichloroethene	5	Not Listed	2/4	0.011	0.062	0.00675	0.0195	0.00808	0.0286
Total VOCs	Not Listed	100	2/4	0.012	0.064	0.0820	0.0690	0.0526	0.0416
PCBs-Unfiltered									
Aroclor-1254	Not Applicable	Not Listed	4/4	0.00014	0.00094	0.000175	0.000358	0.000251	0.000389
Aroclor-1260	Not Applicable	Not Listed	1/4	0.00022	0.00022	0.0000330	0.0000798	0.0000530	0.0000935
Total PCBs	Not Applicable	0.005	4/4	0.00014	0.00116	0.000175	0.000423	0.000267	0.000519
PCBs-Filtered					•				
Aroclor-1254	Not Listed	Not Listed	6/9	0.000071	0.0016	0.0000720	0.000245	0.000128	0.000314
Aroclor-1260	Not Listed	Not Listed	1/9	0	0.0007	0.0000330	0.0000748	0.0000478	0.000111
Total PCBs	0.0003	0.005	6/9	0.000071	0.0023	0.0000720	0.000281	0.000132	0.000413
Semivolatile Organics					•			•	
None Detected	Not Applicable	Not Applicable	0/4	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Organochlorine Pesticides									
Endrin	0.005	0.05	1/3	0.0000042	0.0000042	0.0000500	0.0000347	0.0000219	0.0000264
Organophosphate Pesticide	es								
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Herbicides									
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Furans		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		· ·
2,3,7,8-TCDF	Not Listed	Not Listed	1/4	5.5E-09	5.5E-09	0.00000000200	0.00000000278	0.00000000241	0.00000000186
TCDFs (total)	Not Listed	Not Listed	1/4	0.0000001	0.0000001	0.0000000380	0.0000000273	0.00000000626	0.0000000485
2,3,4,7,8-PeCDF	Not Listed	Not Listed	1/4	6.3E-09	6.3E-09	0.00000000195	0.00000000288	0.00000000236	0.00000000230
PeCDFs (total)	Not Listed	Not Listed	1/4	0.000000086	0.000000086	0.00000000590	0.0000000248	0.00000000670	0.0000000410
1,2,3,4,7,8-HxCDF	Not Listed	Not Listed	1/4	5.5E-09	5.5E-09	0.00000000575	0.0000000570	0.00000000455	0.00000000356
1,2,3,6,7,8-HxCDF	Not Listed	Not Listed	2/4	3.3E-09	0.000000016	0.00000000245	0.00000000555	0.0000000324	0.00000000702
1,2,3,7,8,9-HxCDF	Not Listed	Not Listed	1/4	3.9E-09	3.9E-09	0.0000000300	0.00000000295	0.00000000267	0.0000000143
2,3,4,6,7,8-HxCDF	Not Listed	Not Listed	1/4	4.3E-09	4.3E-09		0.00000000200	0.0000000157	0.00000000161
HxCDFs (total)	Not Listed	Not Listed	2/4	0.00000032	0.00000035	0.000000168	0.0000000175	0.00000000695	0.000000185
1,2,3,4,6,7,8-HpCDF	Not Listed	Not Listed	1/4	8.5E-09	8.5E-09	0.0000000240	0.0000000365	0.0000000272	0.00000000336
1,2,3,4,7,8,9-HpCDF	Not Listed	Not Listed	1/4	2.8E-09	2.8E-09	0.00000000235	0.00000000228	0.00000000215	0.000000000826
HpCDFs (total)	Not Listed	Not Listed	2/4	8.5E-09	0.000000009	0.0000000500	0.0000000508	0.0000000349	0.00000000425
OCDF	Not Listed	Not Listed	1/4	0.00000014	0.000000014	0.0000000395	0.00000000610	0.00000000479	0.00000000535

Table B-2 Summary Of Historical Groundwater Analytical Results - Well GMA2-1

Sample ID:	Method 1 GW-3	MCP UCL	Detection	Minimum	Maximum	Median	Arithmetic	Geometric	Standard
Parameter Date Collected:	Standards	for GroundWater	Frequency	Detect	Detect	Value	Average	Mean	Deviation
Dioxins									
1,2,3,4,6,7,8-HpCDD	Not Listed	Not Listed	2/4	2.9E-09	3.6E-09	0.00000000240	0.00000000253	0.00000000241	0.000000000888
HpCDDs (total)	Not Listed	Not Listed	1/4	3.6E-09	3.6E-09	0.0000000180	0.00000000218	0.00000000204	0.000000000964
OCDD	Not Listed	Not Listed	1/4	0.00000017	0.00000017	0.00000000560	0.00000000755	0.00000000562	0.00000000662
Total TEQs (WHO TEFs)	0.000001	0.000001	4/4	4.2E-09	8.5E-09	0.00000000785	0.00000000710	0.0000000685	0.00000000196
Inorganics-Unfiltered									
Antimony	Not Applicable	80	2/4	0.0084	0.014	0.0220	0.0206	0.0180	0.0111
Barium	Not Applicable	100	3/4	0.024	0.046	0.0400	0.0510	0.0440	0.0339
Chromium	Not Applicable	3	1/4	0.004	0.004	0.00500	0.00475	0.00473	0.000500
Copper	Not Applicable	Not Listed	2/4	0.0014	0.005	0.00900	0.00810	0.00586	0.00585
Cyanide	Not Applicable	2	2/4	0.0027	0.018	0.00500	0.00768	0.00590	0.00697
Mercury	Not Applicable	0.2	1/4	0.00037	0.00037	0.000100	0.000168	0.000139	0.000135
Nickel	Not Applicable	2	2/4	0.0024	0.0025	0.0113	0.0112	0.00700	0.0101
Silver	Not Applicable	1	1/4	0.0014	0.0014	0.00250	0.00223	0.00216	0.000550
Zinc	Not Applicable	50	3/4	0.012	0.017	0.0130	0.0133	0.0130	0.00299
Inorganics-Filtered									
Antimony	8	80	1/4	0.0075	0.0075	0.0300	0.0244	0.0212	0.0113
Barium	50	100	3/4	0.024	0.046	0.0410	0.0515	0.0446	0.0336
Copper	Not Listed	Not Listed	2/4	0.0015	0.0045	0.00875	0.00800	0.00581	0.00590
Cyanide	0.03	2	1/5	0.0024	0.0024	0.00500	0.00448	0.00432	0.00116
Mercury	0.02	0.2	1/4	0.00058	0.00058	0.000100	0.000220	0.000155	0.000240
Nickel	0.2	2	2/4	0.0016	0.0023	0.0112	0.0110	0.00619	0.0104
Zinc	0.9	50	3/4	0.0062	0.014	0.0110	0.0106	0.0101	0.00333

Page 2 of 2

Table B-3
Summary Of Historical Groundwater Analytical Results - Well GMA2-2

Sample ID:	Method 1 GW-2	Method 1 GW-3	MCP UCL	Detection	Minimum	Maximum	Median	Arithmetic	Geometric	Standard
Parameter Date Collected:	Standards	Standards	for GroundWater	Frequency	Detect	Detect	Value	Average	Mean	Deviation
Volatile Organics										
Acetone	50	50	100	1/4	0.018	0.018	0.00500	0.00825	0.00689	0.00650
Chloroform	0.4	10	100	1/4	0.0058	0.0058	0.00250	0.00333	0.00309	0.00165
Tetrachloroethene	0.05	30	100	4/4	0.0014	0.0025	0.00200	0.00198	0.00193	0.000457
Toluene	8	4	80	1/4	0.0009	0.0009	0.00250	0.00210	0.00194	0.000800
Total VOCs	5	Not Listed	Not Listed	4/4	0.0017	0.019	0.00565	0.00805	0.00514	0.00805
PCBs-Unfiltered										
Aroclor-1254	Not Listed	Not Applicable	Not Listed	3/4	0.000038	0.00028	0.000147	0.000152	0.0000998	0.000132
Aroclor-1260	Not Listed	Not Applicable	Not Listed	1/4	0	0.000026	0.0000330	0.0000320	0.0000320	0.00000200
Total PCBs	Not Listed	Not Applicable	0.005	3/4	0.000038	0.00028	0.000153	0.000155	0.000107	0.000128
PCBs-Filtered										
Aroclor-1254	Not Listed	Not Listed	Not Listed	3/4	0.00018	0.00023	0.000111	0.000121	0.0000870	0.0000989
Total PCBs	Not Listed	0.0003	0.005	3/4	0.00018	0.00023	0.000111	0.000121	0.0000870	0.0000989
Semivolatile Organics										
None Detected	Not Applicable	Not Applicable	Not Applicable	0/4	Not Applicable					
Organochlorine Pesticides										
None Detected	Not Applicable	Not Applicable	Not Applicable	0/3	Not Applicable					
Organophosphate Pesticides										
None Detected	Not Applicable	Not Applicable	Not Applicable	0/3	Not Applicable					
Herbicides				•				•		
None Detected	Not Applicable	Not Applicable	Not Applicable	0/3	Not Applicable					
Furans										
2,3,7,8-TCDF	Not Listed	Not Listed	Not Listed	1/4	0	1.4E-09	0.0000000145	0.0000000143	0.0000000134	0.000000000550
TCDFs (total)	Not Listed	Not Listed	Not Listed	1/4	0	1.4E-09	0.0000000145	0.0000000143	0.0000000134	0.00000000550
1,2,3,7,8-PeCDF	Not Listed	Not Listed	Not Listed	2/4	2.1E-09	0.000000005	0.0000000175	0.0000000190	0.0000000183	0.00000000638
2,3,4,7,8-PeCDF	Not Listed	Not Listed	Not Listed	1/4	1.7E-09	1.7E-09	0.0000000150	0.0000000155	0.00000000154	0.000000000252
PeCDFs (total)	Not Listed	Not Listed	Not Listed	2/4	3.8E-09	0.000000005	0.00000000215	0.00000000210	0.00000000201	0.000000000678
1,2,3,4,7,8-HxCDF	Not Listed	Not Listed	Not Listed	2/4	1.6E-09	3.4E-09	0.0000000155	0.0000000163	0.00000000161	0.000000000287
1,2,3,6,7,8-HxCDF	Not Listed	Not Listed	Not Listed	1/4	0	3.1E-09	0.0000000145	0.0000000145	0.0000000142	0.00000000311
1,2,3,7,8,9-HxCDF	Not Listed	Not Listed	Not Listed	1/4	0	3.8E-09	0.0000000190	0.0000000183	0.0000000179	0.000000000411
2,3,4,6,7,8-HxCDF	Not Listed	Not Listed	Not Listed	1/4	0	2.6E-09	0.0000000150	0.0000000155	0.0000000153	0.000000000265
HxCDFs (total)	Not Listed	Not Listed	Not Listed	2/4	1.6E-09	0.000000013	0.0000000150	0.00000000280	0.00000000215	0.00000000267
1,2,3,4,6,7,8-HpCDF	Not Listed	Not Listed	Not Listed	1/4	0	3.4E-09	0.0000000170	0.0000000170	0.0000000166	0.000000000408
1,2,3,4,7,8,9-HpCDF	Not Listed	Not Listed	Not Listed	1/4	0	2.1E-09	0.0000000165	0.0000000183	0.0000000175	0.000000000618
HpCDFs (total)	Not Listed	Not Listed	Not Listed	1/4	0	5.5E-09	0.0000000185	0.00000000203	0.0000000190	0.000000000846
OCDF	Not Listed	Not Listed	Not Listed	1/4	0	2.9E-09	0.00000000320	0.00000000425	0.00000000365	0.00000000291

Table B-3 Summary Of Historical Groundwater Analytical Results - Well GMA2-2

Sample ID:	Method 1 GW-2		MCP UCL	Detection	Minimum	Maximum	Median	Arithmetic	Geometric	Standard
Parameter Date Collected:	Standards	Standards	for GroundWater	Frequency	Detect	Detect	Value	Average	Mean	Deviation
Dioxins										
1,2,3,7,8-PeCDD	Not Listed	Not Listed	Not Listed	1/4	0	3.2E-09	0.0000000175	0.00000000203	0.00000000191	0.000000000826
PeCDDs (total)	Not Listed	Not Listed	Not Listed	1/4	0	3.2E-09	0.0000000175	0.00000000203	0.00000000191	0.000000000826
1,2,3,4,7,8-HxCDD	Not Listed	Not Listed	Not Listed	1/4	0	2.9E-09	0.0000000185	0.00000000195	0.00000000192	0.00000000387
1,2,3,6,7,8-HxCDD	Not Listed	Not Listed	Not Listed	1/4	0	3.5E-09	0.00000000195	0.0000000193	0.00000000190	0.00000000386
1,2,3,7,8,9-HxCDD	Not Listed	Not Listed	Not Listed	1/4	0	3.6E-09	0.0000000195	0.0000000198	0.00000000194	0.000000000457
HxCDDs (total)	Not Listed	Not Listed	Not Listed	1/4	0	0.0000001	0.00000000205	0.00000000275	0.00000000240	0.0000000181
1,2,3,4,6,7,8-HpCDD	Not Listed	Not Listed	Not Listed	1/4	0	0.000000002	0.0000000190	0.00000000210	0.00000000203	0.000000000663
HpCDDs (total)	Not Listed	Not Listed	Not Listed	1/4	0	0.000000002	0.00000000215	0.00000000223	0.00000000217	0.00000000580
OCDD	Not Listed	Not Listed	Not Listed	1/4	5.3E-09	5.3E-09	0.0000000550	0.0000000588	0.00000000514	0.00000000333
Total TEQs (WHO TEFs)	Not Listed	0.0000001	0.000001	4/4	2.3E-09	7.8E-09	0.00000000665	0.00000000663	0.00000000652	0.0000000136
Inorganics-Unfiltered										
Arsenic	Not Listed	Not Applicable	9	1/4	0.0047	0.0047	0.00500	0.00493	0.00492	0.000150
Barium	Not Listed	Not Applicable	100	3/4	0.048	0.078	0.0735	0.0738	0.0713	0.0213
Cadmium	Not Listed	Not Applicable	0.05	1/4	0.00053	0.00053	0.00250	0.00225	0.00220	0.000500
Chromium	Not Listed	Not Applicable	3	1/4	0.0012	0.0012	0.00500	0.00405	0.00350	0.00190
Cobalt	Not Listed	Not Applicable	Not Listed	1/4	0.0013	0.0013	0.0250	0.0191	0.0119	0.0119
Mercury	Not Listed	Not Applicable	0.2	1/4	0.00025	0.00034	0.000100	0.000150	0.000132	0.000100
Nickel	Not Listed	Not Applicable	2	2/4	0.0016	0.003	0.0115	0.0111	0.00656	0.0103
Vanadium	Not Listed	Not Applicable	40	1/4	0.002	0.002	0.0250	0.0193	0.0133	0.0115
Zinc	Not Listed	Not Applicable	50	3/4	0.0064	0.013	0.00985	0.00968	0.00950	0.00205
Inorganics-Filtered										
Antimony	Not Listed	8	80	1/4	0.012	0.012	0.0300	0.0255	0.0239	0.00900
Barium	Not Listed	50	100	3/4	0.046	0.084	0.0765	0.0748	0.0719	0.0226
Cadmium	Not Listed	0.004	0.05	1/4	0	0.00058	0.00250	0.00288	0.00262	0.00149
Cobalt	Not Listed	Not Listed	Not Listed	1/4	0.002	0.002	0.0250	0.0193	0.0133	0.0115
Cyanide	Not Listed	0.03	2	1/3	0	0.0023	0.00500	0.00457	0.00452	0.000751
Mercury	Not Listed	0.02	0.2	1/4	0.00075	0.00078	0.000100	0.000268	0.000167	0.000335
Nickel	Not Listed	0.2	2	1/4	0.0028	0.0028	0.0200	0.0157	0.0122	0.00860
Vanadium	Not Listed	4	40	2/4	0.0022	0.0038	0.0144	0.0140	0.00850	0.0127
Zinc	Not Listed	0.9	50	2/4	0.007	0.0082	0.00955	0.00903	0.00893	0.00142

Table B-4
Summary Of Historical Groundwater Analytical Results - Well GMA2-3

Sample ID:	Method 1 GW-2	Method 1 GW-3	MCP UCL	Detection	Minimum	Maximum	Maximum	Median	Arithmetic	Geometric	Standard
Parameter Date Collected:	Standards	Standards	for GroundWater	Frequency	Detect	Detect	Non-Detect	Value	Average	Mean	Deviation
Volatile Organics											
Toluene	8	4	80	1/4	0.00098	0.00098	0.005	0.00250	0.00212	0.00198	0.000760
Total VOCs	5	Not Listed	Not Listed	1/4	0.00098	0.00098	0.2	0.100	0.0752	0.0315	0.0495
PCBs-Unfiltered											
Aroclor-1254	Not Listed	Not Applicable	Not Listed	2/2	0.00065	0.001	N/A	0.000825	0.000825	0.000806	0.000247
Total PCBs	Not Listed	Not Applicable	0.005	2/2	0.00065	0.001	N/A	0.000825	0.000825	0.000806	0.000247
PCBs-Filtered											
Aroclor-1254	Not Listed	Not Listed	Not Listed	2/2	0.00056	0.00071	N/A	0.000635	0.000635	0.000631	0.000106
Total PCBs	Not Listed	0.0003	0.005	2/2	0.00056	0.00071	N/A	0.000635	0.000635	0.000631	0.000106
Semivolatile Organics											
1,2,4-Trichlorobenzene	2	50	100	1/4	0.00052	0.00052	0.005	0.00250	0.00201	0.00169	0.000990
Inorganics-Unfiltered											
Cyanide	Not Listed	Not Applicable	2	2/2	0.0026	0.0029	N/A	0.00275	0.00275	0.00275	0.000212
Inorganics-Filtered		•				•					
Cyanide	Not Listed	0.03	2	2/2	0.0022	0.0029	N/A	0.00255	0.00255	0.00253	0.000495

Table B-5
Summary Of Historical Groundwater Analytical Results - Well GMA2-4

Sample ID:	Method 1 GW-3	MCP UCL	Detection	Minimum	Maximum	Median	Arithmetic	Geometric	Standard
Parameter late Collected:	Standards	for GroundWater	Frequency	Detect	Detect	Value	Average	Mean	Deviation
Volatile Organics									
Toluene	4	80	1/4	0.0014	0.0014	0.00250	0.00223	0.00216	0.000550
Total VOCs	Not Listed	Not Listed	1/4	0.0014	0.0014	0.100	0.0754	0.0344	0.0493
PCBs-Unfiltered			•						
Aroclor-1254	Not Applicable	Not Listed	3/4	0.0001	0.0018	0.000310	0.000613	0.000236	0.000820
Aroclor-1260	Not Applicable	Not Listed	1/4	0.0017	0.0017	0.0000330	0.000450	0.0000884	0.000834
Total PCBs	Not Applicable	0.005	3/4	0.0001	0.0035	0.000310	0.00104	0.000278	0.00166
PCBs-Filtered			•						
Aroclor-1254	Not Listed	Not Listed	3/7	0.000091	0.00039	0.0000910	0.000190	0.000108	0.000182
Total PCBs	0.0003	0.005	3/7	0.000091	0.00039	0.0000910	0.000190	0.000108	0.000182
Semivolatile Organics			•						
None Detected	Not Applicable	Not Applicable	0/4	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
<b>Organochlorine Pesticides</b>	• • • • • • • • • • • • • • • • • • • •		•			• • • • • • • • • • • • • • • • • • • •	•		
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Organophosphate Pesticide	es		•			• • • • • • • • • • • • • • • • • • • •	•		
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Herbicides			•			• • • • • • • • • • • • • • • • • • • •	•		· ·
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Furans			•						
1,2,3,4,7,8-HxCDF	Not Listed	Not Listed	1/4	7.5E-09	7.5E-09	0.00000000465	0.0000000132	0.00000000521	0.000000194
1,2,3,6,7,8-HxCDF	Not Listed	Not Listed	1/4	4.7E-09	4.7E-09	0.0000000175	0.00000000238	0.00000000208	0.0000000157
1,2,3,7,8,9-HxCDF	Not Listed	Not Listed	1/4	0.000000012	0.00000012	0.00000000235	0.00000000450	0.00000000304	0.00000000503
2,3,4,6,7,8-HxCDF	Not Listed	Not Listed	1/4	7.3E-09	7.3E-09	0.0000000195	0.00000000313	0.00000000245	0.00000000280
HxCDFs (total)	Not Listed	Not Listed	1/4	0.000000032	0.00000032	0.0000000185	0.00000000925	0.0000000345	0.000000152
1,2,3,4,7,8,9-HpCDF	Not Listed	Not Listed	1/4	9.2E-09	9.2E-09	0.0000000185		0.00000000253	0.0000000378
HpCDFs (total)	Not Listed	Not Listed	1/4	9.2E-09	9.2E-09	0.0000000155	0.0000000340	0.00000000230	0.0000000387
Dioxins									
1,2,3,7,8-PeCDD	Not Listed	Not Listed	1/4	7.6E-09	7.6E-09	0.0000000300	0.00000000373	0.00000000307	0.00000000271
PeCDDs (total)	Not Listed	Not Listed	1/4	7.6E-09	7.6E-09	0.0000000300	0.0000000373	0.00000000307	0.00000000271
1,2,3,4,7,8-HxCDD	Not Listed	Not Listed	1/4	5.7E-09	5.7E-09	0.00000000415	0.0000000390	0.00000000328	0.00000000232
1,2,3,6,7,8-HxCDD	Not Listed	Not Listed	1/4	6.8E-09	6.8E-09	0.0000000365	0.0000000385	0.0000000318	0.00000000251
1,2,3,7,8,9-HxCDD	Not Listed	Not Listed	1/4	0.000000012	0.000000012	0.00000000400		0.0000000383	0.00000000479
HxCDDs (total)	Not Listed	Not Listed	1/4	0.000000025	0.000000025	0.0000000375		0.00000000449	0.000000111
1,2,3,4,6,7,8-HpCDD	Not Listed	Not Listed	1/4	3.3E-09	3.3E-09	0.00000000285	0.00000000295	0.00000000286	0.000000000866
HpCDDs (total)	Not Listed	Not Listed	1/4	3.3E-09	3.3E-09	0.00000000285	0.00000000295	0.00000000286	0.000000000866
OCDD	Not Listed	Not Listed	2/4	0.00000013	0.000000021	0.0000000115	0.0000000131	0.0000000123	0.0000000557
Total TEQs (WHO TEFs)	0.000001	0.000001	4/4	3.9E-09	0.000000016	0.000000113	0.0000000106	0.00000000937	0.00000000520

Table B-5
Summary Of Historical Groundwater Analytical Results - Well GMA2-4

	Sample ID:		MCP UCL	Detection	Minimum	Maximum	Median	Arithmetic	Geometric	Standard					
Parameter	ate Collected:	Standards	for GroundWater	Frequency	Detect	Detect	Value	Average	Mean	Deviation					
Inorganics-L	Jnfiltered														
Barium															
Cyanide		Not Applicable	2	1/4	0.003	0.003	0.00500	0.00450	0.00440	0.00100					
Tin		Not Applicable	Not Listed	1/4	0.012	0.012	0.0150	0.0143	0.0142	0.00150					
Zinc		Not Applicable	50	1/4	0.014	0.014	0.0100	0.0110	0.0109	0.00200					
Inorganics-F	iltered														
Antimony		8	80	1/4	0.01	0.01	0.0300	0.0250	0.0228	0.0100					
Barium		50	100	3/4	0.021	0.032	0.0270	0.0438	0.0349	0.0378					
Beryllium		0.05	0.5	1/4	0.00036	0.00036	0.000500	0.000465	0.000461	0.0000700					
Chromium		0.3	3	1/4	0.0021	0.0021	0.00500	0.00628	0.00511	0.00469					
Copper		Not Listed	Not Listed	1/4	0.013	0.013	0.0130	0.0223	0.0182	0.0185					
Mercury		0.02	0.2	1/4	0.0002	0.0002	0.000100	0.000125	0.000119	0.0000500					
Nickel		0.2	2	1/4	0.002	0.002	0.0200	0.0155	0.0112	0.00900					
Zinc		0.9	50	2/4	0.0042	0.065	0.0100	0.0223	0.0129	0.0286					

Table B-6
Summary Of Historical Groundwater Analytical Results - Well GMA2-5

Sample ID:		Method 1 GW-3	MCP UCL	Detection	Minimum	Maximum	Median	Arithmetic	Geometric	Standard
Parameter Date Collected:	Standards	Standards	for GroundWater	Frequency	Detect	Detect	Value	Average	Mean	Deviation
Volatile Organics										
None Detected	Not Applicable	Not Applicable	Not Applicable	0/4	Not Applicable					
PCBs-Unfiltered										
Aroclor-1254	Not Listed	Not Applicable	Not Listed	3/4	0.000028	0.000049	0.0000340	0.0000363	0.0000355	0.00000900
Total PCBs	Not Listed	Not Applicable	0.005	3/4	0.000028	0.000049	0.0000340	0.0000363	0.0000355	0.00000900
PCBs-Filtered										
Aroclor-1254	Not Listed	Not Listed	Not Listed	2/4	0.000018	0.000026	0.0000295	0.0000275	0.0000267	0.00000714
Total PCBs	Not Listed	0.0003	0.005	2/4	0.000018	0.000026	0.0000295	0.0000275	0.0000267	0.00000714
Semivolatile Organics										
None Detected	Not Applicable	Not Applicable	Not Applicable	0/4	Not Applicable					
Organochlorine Pesticides								•	•	
None Detected	Not Applicable	Not Applicable	Not Applicable	0/3	Not Applicable					
Organophosphate Pesticide	es							•	•	
None Detected	Not Applicable	Not Applicable	Not Applicable	0/3	Not Applicable					
Herbicides								•	•	
None Detected	Not Applicable	Not Applicable	Not Applicable	0/3	Not Applicable					
Furans										
1,2,3,4,7,8-HxCDF	Not Listed	Not Listed	Not Listed	1/4	2.1E-09	2.1E-09	0.0000000145	0.0000000134	0.0000000109	0.000000000785
HxCDFs (total)	Not Listed	Not Listed	Not Listed	1/4	2.1E-09	2.1E-09	0.0000000145	0.0000000143	0.0000000131	0.000000000640
Dioxins										
Total TEQs (WHO TEFs)	Not Listed	0.0000001	0.000001	4/4	1.7E-09	0.00000001	0.00000000435	0.00000000510	0.0000000398	0.00000000388
Inorganics-Unfiltered										
Barium	Not Listed	Not Applicable	100	3/4	0.011	0.016	0.0150	0.0353	0.0223	0.0432
Cadmium	Not Listed	Not Applicable	0.05	1/4	0.00065	0.00065	0.00250	0.00204	0.00179	0.000925
Chromium	Not Listed	Not Applicable	3	1/4	0.0013	0.0013	0.00500	0.00408	0.00357	0.00185
Mercury	Not Listed	Not Applicable	0.2	1/4	0.00026	0.00026	0.000100	0.000140	0.000127	0.0000800
Zinc	Not Listed	Not Applicable	50	2/4	0.008	0.018	0.0100	0.0115	0.0110	0.00443
Inorganics-Filtered										
Barium	Not Listed	50	100	3/4	0.012	0.015	0.0150	0.0355	0.0228	0.0430
Beryllium	Not Listed	0.05	0.5	2/3	0.00032	0.00042	0.000420	0.000413	0.000407	0.0000902
Cadmium	Not Listed	0.004	0.05	1/4	0.002	0.002	0.00250	0.00300	0.00281	0.00135
Chromium	Not Listed	0.3	3	1/4	0.0029	0.0029	0.00500	0.00648	0.00554	0.00446
Cobalt	Not Listed	Not Listed	Not Listed	1/4	0.0024	0.0024	0.0250	0.0194	0.0139	0.0113
Copper	Not Listed	Not Listed	Not Listed	2/4	0.0025	0.0034	0.00820	0.0172	0.00862	0.0224
Mercury	Not Listed	0.02	0.2	1/4	0.00036	0.00036	0.000100	0.000165	0.000138	0.000130
Vanadium	Not Listed	4	40	1/4	0.0016	0.0016	0.0250	0.0192	0.0126	0.0117

Table B-7
Summary Of Historical Groundwater Analytical Results - Well GMA2-6

Sample ID: Parameter Date Collected:	Method 1 GW-3 Standards	MCP UCL for GroundWater	Detection Frequency	Minimum Detect	Maximum Detect	Median Value	Arithmetic Average	Geometric Mean	Standard Deviation
Volatile Organics	01411444			201001	20.001	1 0.100	711011190		2011411011
1,1-Dichloroethane	20	100	1/4	0.00061	0.00061	0.00250	0.00203	0.00176	0.000945
Chlorobenzene	1	10	1/4	0.00057	0.00057	0.00250	0.00202	0.00173	0.000965
trans-1,2-Dichloroethene	50	100	1/4	0.0084	0.0084	0.00250	0.00398	0.00338	0.00295
Trichloroethene	5	50	2/4	0.044	0.091	0.0233	0.0350	0.0126	0.0421
Vinyl Chloride	50	100	1/4	0.0027	0.0027	0.00100	0.00143	0.00128	0.000850
Total VOCs	Not Listed	Not Listed	2/4	0.044	0.1	0.100	0.0860	0.0814	0.0280
PCBs-Unfiltered		<u> </u>				<u> </u>	<u> </u>	<u> </u>	
Aroclor-1254	Not Applicable	Not Listed	2/4	0.00014	0.00022	0.0000865	0.000107	0.0000761	0.0000909
Total PCBs	Not Applicable	0.005	2/4	0.00014	0.00022	0.0000865	0.000107	0.0000761	0.0000909
PCBs-Filtered		<u> </u>		L		<u> </u>	<u> </u>	<u> </u>	
Aroclor-1254	Not Listed	Not Listed	2/4	0.00011	0.00015	0.0000715	0.0000815	0.0000651	0.0000583
Total PCBs	0.0003	0.005	2/4	0.00011	0.00015	0.0000715	0.0000815	0.0000651	0.0000583
Semivolatile Organics						•	•	•	
None Detected	Not Applicable	Not Applicable	0/4	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
<b>Organochlorine Pesticides</b>					•				
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Organophosphate Pesticide	es								
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Herbicides	• • • • • • • • • • • • • • • • • • • •						•		• • • • • • • • • • • • • • • • • • • •
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Furans									
TCDFs (total)	Not Listed	Not Listed	1/4	0.00000002	0.00000002	0.0000000140	0.00000000586	0.00000000214	0.00000000944
1,2,3,7,8-PeCDF	Not Listed	Not Listed	3/4	1.5E-09	4.6E-09	0.00000000235	0.00000000270	0.00000000247	0.0000000136
PeCDFs (total)	Not Listed	Not Listed	3/4	1.5E-09	0.000000021	0.0000000330	0.00000000728	0.00000000413	0.00000000925
1,2,3,4,7,8-HxCDF	Not Listed	Not Listed	3/4	3.9E-09	0.000000008	0.00000000430	0.00000000436	0.0000000334	0.00000000294
1,2,3,6,7,8-HxCDF	Not Listed	Not Listed	2/4	3.4E-09	5.1E-09	0.00000000245	0.00000000262	0.0000000187	0.00000000205
1,2,3,7,8,9-HxCDF	Not Listed	Not Listed	1/4	3.7E-09	3.7E-09	0.00000000235	0.00000000243	0.00000000226	0.0000000102
2,3,4,6,7,8-HxCDF	Not Listed	Not Listed	2/4	1.2E-09	3.2E-09	0.0000000145	0.0000000175	0.0000000156	0.0000000102
HxCDFs (total)	Not Listed	Not Listed	4/4	1.2E-09	0.00000015	0.000000100	0.00000000905	0.0000000645	0.0000000597
1,2,3,4,6,7,8-HpCDF	Not Listed	Not Listed	2/4	3.2E-09	3.8E-09	0.0000000250	0.00000000253	0.00000000231	0.0000000117
OCDF	Not Listed	Not Listed	0/4	ND	ND	0.00000000260	0.00000000315	0.0000000300	0.0000000124

Page 1 of 2

Table B-7
Summary Of Historical Groundwater Analytical Results - Well GMA2-6

Sample ID: Parameter Date Collected:	Method 1 GW-3 Standards	MCP UCL for GroundWater	Detection	Minimum Detect	Maximum Detect	Median Value	Arithmetic Average	Geometric Mean	Standard Deviation
	Statiualus	ioi Giodiidwatei	Frequency	Detect	Detect	value	Average	IVICALI	Deviation
Dioxins									
1,2,3,4,7,8-HxCDD	Not Listed	Not Listed	1/4	2.9E-09	2.9E-09	0.00000000205	0.00000000210	0.00000000203	0.00000000616
1,2,3,7,8,9-HxCDD	Not Listed	Not Listed	1/4	3.3E-09	3.3E-09	0.00000000195	0.00000000213	0.00000000201	0.00000000842
HxCDDs (total)	Not Listed	Not Listed	1/4	6.3E-09	6.3E-09	0.00000000210	0.00000000295	0.00000000245	0.00000000227
1,2,3,4,6,7,8-HpCDD	Not Listed	Not Listed	1/4	3.9E-09	3.9E-09	0.00000000225	0.00000000258	0.00000000247	0.000000000907
OCDD	Not Listed	Not Listed	2/4	7.9E-09	0.000000028	0.000000130	0.000000155	0.000000134	0.00000000960
Total TEQs (WHO TEFs)	0.0000001	0.000001	4/4	3.4E-09	8.2E-09	0.00000000675	0.00000000628	0.0000000597	0.00000000204
Inorganics-Unfiltered									
Barium	Not Applicable	100	3/4	0.024	0.071	0.0700	0.0660	0.0586	0.0314
Cobalt	Not Applicable	Not Listed	1/4	0.0015	0.0015	0.0250	0.0191	0.0124	0.0118
Cyanide	Not Applicable	2	1/4	0.0049	0.0049	0.00500	0.00498	0.00497	0.0000500
Mercury	Not Applicable	0.2	2/4	0.00004	0.00027	0.000100	0.000128	0.000102	0.0000991
Nickel	Not Applicable	2	2/4	0.0027	0.0028	0.0114	0.0114	0.00742	0.00996
Zinc	Not Applicable	50	3/4	0.0094	0.02	0.0110	0.0129	0.0123	0.00489
Inorganics-Filtered									
Antimony	8	80	1/4	0.011	0.011	0.0300	0.0253	0.0233	0.00950
Arsenic	0.9	9	1/4	0.0047	0.0047	0.00500	0.0162	0.00875	0.0226
Barium	50	100	3/4	0.024	0.068	0.0670	0.0645	0.0573	0.0312
Cobalt	Not Listed	Not Listed	1/4	0.0016	0.0016	0.0250	0.0192	0.0126	0.0117
Cyanide	0.03	2	1/3	0.0034	0.0034	0.00500	0.00447	0.00440	0.000924
Mercury	0.02	0.2	1/4	0.00081	0.00081	0.000100	0.000278	0.000169	0.000355
Nickel	0.2	2	2/4	0.0027	0.0032	0.0116	0.0115	0.00767	0.00985
Silver	0.007	1	1/4	0.0012	0.0012	0.00250	0.00218	0.00208	0.000650
Zinc	0.9	50	2/4	0.0031	0.0094	0.00970	0.00813	0.00735	0.00336

Table B-8
Summary Of Historical Groundwater Analytical Results - Well GMA2-7

	Sample ID:		MCP UCL	Detection	Minimum	Maximum	Median	Arithmetic	Geometric	Standard
Parameter	Date Collected:	Standards	for GroundWater	Frequency	Detect	Detect	Value	Average	Mean	Deviation
Volatile Org										
None Detect		Not Applicable	Not Applicable	0/4	Not Applicable					
PCBs-Unfilt	tered									
None Detect	ted	Not Applicable	Not Applicable	0/4	Not Applicable					
PCBs-Filter	ed									
Aroclor-1254	1	Not Listed	Not Listed	2/4	0.000043	0.00014	0.0000395	0.0000630	0.0000515	0.0000517
Total PCBs		0.0003	0.005	2/4	0.000043	0.00014	0.0000395	0.0000630	0.0000515	0.0000517
Semivolatile	e Organics									
None Detect	ted	Not Applicable	Not Applicable	0/4	Not Applicable					
Organochlo	rine Pesticides									
None Detect	ted	Not Applicable	Not Applicable	0/2	Not Applicable					
Organopho	sphate Pesticides	3			•					
None Detect	ted	Not Applicable	Not Applicable	0/2	Not Applicable					
Herbicides					•					
None Detect	ted	Not Applicable	Not Applicable	0/2	Not Applicable					
Furans										
1,2,3,6,7,8-F	HxCDF	Not Listed	Not Listed	1/4	0.000000003	0.000000003	0.00000000125	0.0000000149	0.00000000121	0.0000000107
1,2,3,7,8,9-H	HxCDF	Not Listed	Not Listed	1/4	4.2E-09	4.2E-09	0.0000000125	0.0000000183	0.00000000141	0.00000000161
2,3,4,6,7,8-H	HxCDF	Not Listed	Not Listed	1/4	2.9E-09	2.9E-09	0.0000000125	0.0000000148	0.0000000124	0.0000000101
HxCDFs (tot	al)	Not Listed	Not Listed	1/4	0.00000001	0.00000001	0.0000000125	0.00000000324	0.0000000164	0.00000000452
1,2,3,4,6,7,8	B-HpCDF	Not Listed	Not Listed	1/4	2.4E-09	2.4E-09	0.0000000130	0.0000000137	0.0000000119	0.000000000784
HpCDFs (tot	tal)	Not Listed	Not Listed	1/4	2.4E-09	2.4E-09	0.0000000135	0.0000000140	0.00000000121	0.000000000783
Dioxins										
1,2,3,7,8-Pe	CDD	Not Listed	Not Listed	1/4	0.000000003	0.000000003	0.0000000125	0.0000000150	0.00000000122	0.0000000107
PeCDDs (tot	tal)	Not Listed	Not Listed	1/4	0.000000003	0.000000003	0.0000000160	0.0000000167	0.0000000139	0.0000000103
1,2,3,4,7,8-H		Not Listed	Not Listed	1/4	1.7E-09	1.7E-09	0.0000000150	0.0000000145	0.00000000126	0.000000000755
HxCDDs (tot		Not Listed	Not Listed	1/4	1.7E-09	1.7E-09	0.00000000195	0.0000000164	0.0000000139	0.000000000826
1,2,3,4,6,7,8		Not Listed	Not Listed	2/4	0.000000003	4.4E-09	0.00000000215	0.00000000241	0.00000000200	0.0000000161
HpCDDs (to	tal)	Not Listed	Not Listed	1/4	0.000000003	0.000000003	0.0000000175	0.0000000172	0.0000000133	0.0000000114
OCDD		Not Listed	Not Listed	2/4	5.3E-09	7.6E-09	0.00000000730	0.0000000102	0.00000000877	0.00000000725
Total TEQs	(WHO TEFs)	0.0000001	0.000001	4/4	1.7E-09	6.1E-09	0.00000000420	0.00000000408	0.0000000370	0.0000000185

Page 1 of 2

Table B-8
Summary Of Historical Groundwater Analytical Results - Well GMA2-7

_	Sample ID:	Method 1 GW-3	MCP UCL	Detection	Minimum	Maximum	Median	Arithmetic	Geometric	Standard			
Parameter	Date Collected:	Standards	for GroundWater	Frequency	Detect	Detect	Value	Average	Mean	Deviation			
Inorganics-	Unfiltered												
Barium													
Chromium		Not Applicable	3	1/4	0.0011	0.0016	0.00500	0.00410	0.00364	0.00180			
Cyanide		Not Applicable	2	3/4	0.0024	0.007	0.00430	0.00450	0.00417	0.00198			
Lead		Not Applicable	0.15	1/4	0.0026	0.0026	0.00150	0.00178	0.00172	0.000550			
Nickel		Not Applicable	2	1/4	0.003	0.003	0.0200	0.0158	0.0124	0.00850			
Silver		Not Applicable	1	1/4	0.0013	0.0018	0.00250	0.00228	0.00224	0.000450			
Zinc		Not Applicable	50	2/4	0.014	0.024	0.0120	0.0145	0.0135	0.00661			
Inorganics-	Filtered												
Barium		50	100	3/4	0.03	0.065	0.0575	0.0613	0.0559	0.0294			
Chromium		0.3	3	1/4	0	0.0014	0.00500	0.00655	0.00568	0.00438			
Copper		Not Listed	Not Listed	1/4	0.0017	0.0037	0.0130	0.0197	0.0123	0.0208			
Cyanide		0.03	2	2/3	0.0033	0.0037	0.00370	0.00400	0.00394	0.000889			
Mercury		0.02	0.2	1/4	0.0007	0.0007	0.000100	0.000250	0.000163	0.000300			
Nickel		0.2	2	1/4	0.0028	0.0028	0.0200	0.0157	0.0122	0.00860			
Selenium		0.1	1	1/4	0.0053	0.0053	0.00250	0.00320	0.00302	0.00140			

Table B-9
Summary Of Historical Groundwater Analytical Results - Well GMA2-8

Sample ID: Parameter Date Collected:	Method 1 GW-3 Standards	MCP UCL for GroundWater	Detection Frequency	Minimum Detect	Maximum Detect	Median Value	Arithmetic Average	Geometric Mean	Standard Deviation
Volatile Organics	Standards	ioi Giounavatei	Frequency	Detect	Detect	value	Average	Weari	Deviation
None Detected	Not Applicable	Not Applicable	0/4	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
PCBs-Unfiltered	140t / tppiloable	14017 принодые	0/-1	140t / tppiloable	Not ripplicable	Hot Applicable	140t Applicable	140t Applicable	140t / tppiloabic
Aroclor-1254	Not Applicable	Not Listed	2/4	0.000043	0.000086	0.0000355	0.0000475	0.0000434	0.0000258
Total PCBs	Not Applicable	0.005	2/4	0.000043	0.000086	0.0000355	0.0000475	0.0000434	0.0000258
PCBs-Filtered	110t7 (ppilodbio	0.000	27.	0.000010	0.000000	0.0000000	0.0000110	0.0000101	0.0000200
Aroclor-1254	Not Listed	Not Listed	1/4	0	0.000034	0.0000330	0.0000330	0.0000330	0
Total PCBs	0.0003	0.005	1/4	0	0.000034	0.0000330	0.0000330	0.0000330	0
Semivolatile Organics									
None Detected	Not Applicable	Not Applicable	0/4	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Organochlorine Pesticides				''				''	''
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Organophosphate Pesticide						''			''
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Herbicides						''			''
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Furans		.,							• •
1,2,3,7,8,9-HxCDF	Not Listed	Not Listed	1/4	0.000000005	0.000000005	0.00000000160	0.00000000233	0.00000000192	0.0000000182
2,3,4,6,7,8-HxCDF	Not Listed	Not Listed	1/4	0.00000003	0.000000003	0.0000000145	0.0000000170	0.00000000154	0.000000000913
HxCDFs (total)	Not Listed	Not Listed	1/4	0.000000008	0.000000008	0.0000000150	0.00000000295	0.00000000194	0.00000000339
Dioxins									
2,3,7,8-TCDD	Not Listed	Not Listed	1/4	2.5E-09	2.5E-09	0.00000000335	0.0000000368	0.00000000250	0.00000000296
TCDDs (total)	Not Listed	Not Listed	1/4	2.5E-09	2.5E-09	0.0000000380	0.00000000425	0.00000000367	0.00000000257
Total TEQs (WHO TEFs)	0.0000001	0.000001	4/4	0.00000003	0.0000001	0.00000000850	0.00000000750	0.00000000678	0.00000000329
Inorganics-Unfiltered									
Barium	Not Applicable	100	3/4	0.0093	0.016	0.0140	0.0343	0.0206	0.0439
Cyanide	Not Applicable	2	1/4	0.0053	0.0053	0.00500	0.00508	0.00507	0.000150
Mercury	Not Applicable	0.2	1/4	0.00028	0.00028	0.000100	0.000145	0.000129	0.0000900
Zinc	Not Applicable	50	1/4	0.015	0.015	0.0120	0.0123	0.0120	0.00263
Inorganics-Filtered									
Barium	50	100	3/4	0.0093	0.015	0.0135	0.0341	0.0202	0.0440
Beryllium	0.05	0.5	1/4	0.00036	0.00049	0.000500	0.000483	0.000481	0.0000350
Mercury	0.02	0.2	1/4	0.00029	0.00029	0.000100	0.000148	0.000130	0.0000950
Zinc	0.9	50	1/4	0.012	0.012	0.0110	0.0115	0.0114	0.00191

Table B-10 Summary Of Historical Groundwater Analytical Results - Well GMA2-9

Sample ID:	Method 1 GW-3	MCP UCL	Detection	Minimum	Maximum	Median	Arithmetic	Geometric	Standard
Parameter Date Collected:	Standards	for GroundWater	Frequency	Detect	Detect	Value	Average	Mean	Deviation
Volatile Organics									
None Detected	Not Applicable	Not Applicable	0/4	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
PCBs-Unfiltered	•	<u> </u>		•					
Aroclor-1254	Not Applicable	Not Listed	3/4	0.000054	0.00068	0.000162	0.000259	0.000134	0.000300
Total PCBs	Not Applicable	0.005	3/4	0.000054	0.00068	0.000162	0.000259	0.000134	0.000300
PCBs-Filtered	• • • • • • • • • • • • • • • • • • • •		I.						
Aroclor-1254	Not Listed	Not Listed	4/7	0.000076	0.00063	0.0000760	0.000164	0.0000888	0.000197
Total PCBs	0.0003	0.005	4/7	0.000076	0.00063	0.0000760	0.000164	0.0000888	0.000197
Semivolatile Organics									
None Detected	Not Applicable	Not Applicable	0/4	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Organochlorine Pesticides				т	тите франция				тост фриссии
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Organophosphate Pesticide			0,0						
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Herbicides	110t Applicable	140t / tppiloabio	0/0	140t Applicable	140t Applicable	140t Applicable	140t Applicable	140t Applicable	140t Applicable
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Furans	Not Applicable	140t Applicable	0/3	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
1,2,3,7,8-PeCDF	Not Listed	Not Listed	1/4	0.000000001	0.000000001	0.0000000115	0.0000000110	0.0000000105	0.000000000585
2.3.4.7.8-PeCDF	Not Listed	Not Listed	1/4	9E-10	9E-10	0.00000000113	0.00000000118		0.0000000000383
PeCDFs (total)	Not Listed	Not Listed	2/4	1.9E-09	4.3E-09	0.00000000110	0.00000000118		0.00000000040
1,2,3,4,7,8-HxCDF	Not Listed	Not Listed	1/4	0.000000048	0.000000048	0.00000000130	0.00000000213	0.00000000167	0.00000000136
HxCDFs (total)	Not Listed	Not Listed	1/4	0.000000048	0.000000048	0.00000000140	0.0000000128	0.00000000254	0.0000000235
Dioxins	110t Elotod	1101 Liotou	., .	0.000000010	0.000000010	0.0000000110	0.0000000120	0.0000000000	0.0000000200
HxCDDs (total)	Not Listed	Not Listed	1/4	3.1E-09	3.1E-09	0.00000000215	0.00000000199	0.0000000166	0.00000000110
1,2,3,4,6,7,8-HpCDD	Not Listed	Not Listed	1/4	2.2E-09	2.2E-09	0.00000000213	0.00000000133		0.00000000110
HpCDDs (total)	Not Listed	Not Listed	1/4	3.2E-09	3.2E-09	0.00000000133	0.00000000100		0.000000000103
Total TEQs (WHO TEFs)	0.0000001	0.000001	4/4	0.000000002	0.000000012	0.000000000000000			0.00000000443
Inorganics-Unfiltered	0.000000.	0.00000	., .	0.00000000	0.00000012	0.00000000000	0.00000000000	0.0000000000	0.00000000.10
Barium	Not Applicable	100	3/4	0.011	0.017	0.0160	0.0358	0.0230	0.0429
Cadmium	Not Applicable	0.05	1/4	0.0023	0.0023	0.00250	0.00245	0.00245	0.000100
Chromium	Not Applicable	3	1/4	0.002	0.002	0.00500	0.00425	0.00398	0.00150
Cyanide	Not Applicable	2	2/4	0.0023	0.017	0.00500	0.00733	0.00559	0.00657
Nickel	Not Applicable	2	1/4	0.0023	0.0023	0.0200	0.0156	0.0116	0.00885
Vanadium	Not Applicable	40	1/4	0.0024	0.0024	0.0250	0.0194	0.0139	0.0113
Zinc	Not Applicable	50	1/4	0.018	0.018	0.0100	0.0120	0.0116	0.00400
Inorganics-Filtered	• • •		·	t.		ı	ı	ı	
Barium	50	100	3/4	0.012	0.015	0.0145	0.0353	0.0224	0.0432
Beryllium	0.05	0.5	1/4	0.00041	0.00041	0.000500	0.000478	0.000476	0.0000450
Selenium	0.1	1	1/4	0.0049	0.0049	0.00250	0.00310	0.00296	0.00120
Zinc	0.9	50	2/4	0.0016	0.0054	0.00770	0.00675	0.00542	0.00406

Table B-11 Summary Of Historical Groundwater Analytical Results - Well J-1R

Sample ID	: Method 1 GW-3	MCP UCL	Detection	Minimum	Maximum	Median	Arithmetic	Geometric	Standard
Parameter Date Collected	Standards	for GroundWater	Frequency	Detect	Detect	Value	Average	Mean	Deviation
Volatile Organics				•					
Toluene	4	80	2/4	0.00067	0.0029	0.00250	0.00214	0.00187	0.00100
Trichloroethene	5	50	4/4	0.002	0.0084	0.00265	0.00393	0.00326	0.00303
Vinyl Chloride	50	100	1/4	0.0014	0.0014	0.00100	0.00110	0.00109	0.000200
Total VOCs	Not Listed	Not Listed	4/4	0.002	0.013	0.00300	0.00525	0.00391	0.00519
PCBs-Unfiltered									
Aroclor-1254	Not Applicable	Not Listed	2/4	0.00024	0.00036	0.000137	0.000167	0.0000985	0.000162
Total PCBs	Not Applicable	0.005	2/4	0.00024	0.00036	0.000137	0.000167	0.0000985	0.000162
PCBs-Filtered			•	•					
Aroclor-1254	Not Listed	Not Listed	2/4	0.0001	0.00022	0.0000665	0.0000965	0.0000700	0.0000882
Total PCBs	0.0003	0.005	2/4	0.0001	0.00022	0.0000665	0.0000965	0.0000700	0.0000882
Semivolatile Organics	•	•	•	•					
None Detected	Not Applicable	Not Applicable	0/4	Not Applicable					
Organochlorine Pesticides			•						
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable					
Organophosphate Pesticide	es		•						• • • • • • • • • • • • • • • • • • • •
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable					
Herbicides									
None Detected	Not Applicable	Not Applicable	0/3	Not Applicable					
Furans			•						
1,2,3,4,7,8-HxCDF	Not Listed	Not Listed	2/4	3.5E-09	9.5E-09	0.00000000295	0.00000000395	0.00000000239	0.00000000391
1,2,3,6,7,8-HxCDF	Not Listed	Not Listed	1/4	3.4E-09	3.4E-09	0.0000000138	0.0000000162	0.00000000106	0.0000000146
1,2,3,7,8,9-HxCDF	Not Listed	Not Listed	1/4	3.8E-09	3.8E-09	0.00000000210	0.00000000218	0.0000000178	0.0000000143
2,3,4,6,7,8-HxCDF	Not Listed	Not Listed	1/4	2.2E-09	2.2E-09	0.0000000175	0.0000000163	0.0000000142	0.000000000834
HxCDFs (total)	Not Listed	Not Listed	2/4	9.5E-09	0.00000013	0.00000000600	0.00000000658	0.00000000448	0.00000000561
1,2,3,4,7,8,9-HpCDF	Not Listed	Not Listed	1/4	0.00000003	0.000000003	0.00000000215	0.00000000223	0.0000000181	0.0000000148
HpCDFs (total)	Not Listed	Not Listed	1/4	0.00000003	0.00000003	0.00000000215	0.00000000203	0.0000000159	0.0000000135
OCDF	Not Listed	Not Listed	1/4	6.3E-09	6.3E-09	0.00000000440	0.00000000411	0.00000000291	0.00000000304
Dioxins									
1,2,3,7,8-PeCDD	Not Listed	Not Listed	1/4	2.9E-09	2.9E-09	0.00000000210	0.00000000205		0.0000000139
PeCDDs (total)	Not Listed	Not Listed	1/4	2.9E-09	2.9E-09	0.00000000210	0.00000000205		0.0000000139
1,2,3,4,7,8-HxCDD	Not Listed	Not Listed	1/4	3.7E-09	3.7E-09	0.00000000210	0.00000000219	0.0000000186	0.0000000134
1,2,3,6,7,8-HxCDD	Not Listed	Not Listed	1/4	2.8E-09	2.8E-09	0.0000000190	0.0000000184		0.000000000972
HxCDDs (total)	Not Listed	Not Listed	1/4	6.5E-09	6.5E-09	0.00000000210			0.00000000255
1,2,3,4,6,7,8-HpCDD	Not Listed	Not Listed	1/4	2.7E-09	2.7E-09	0.0000000183	0.00000000205		0.0000000174
HpCDDs (total)	Not Listed	Not Listed	1/4	4.3E-09	4.3E-09	0.00000000258	0.00000000245		0.00000000209
OCDD	Not Listed	Not Listed	1/4	0.00000013	0.00000013	0.0000000110	0.00000000973	0.00000000885	0.00000000400
Total TEQs (WHO TEFs)	0.0000001	0.000001	4/4	2.7E-09	0.00000011	0.00000000480	0.00000000583	0.00000000495	0.00000000385

Page 1 of 2

Table B-11 Summary Of Historical Groundwater Analytical Results - Well J-1R

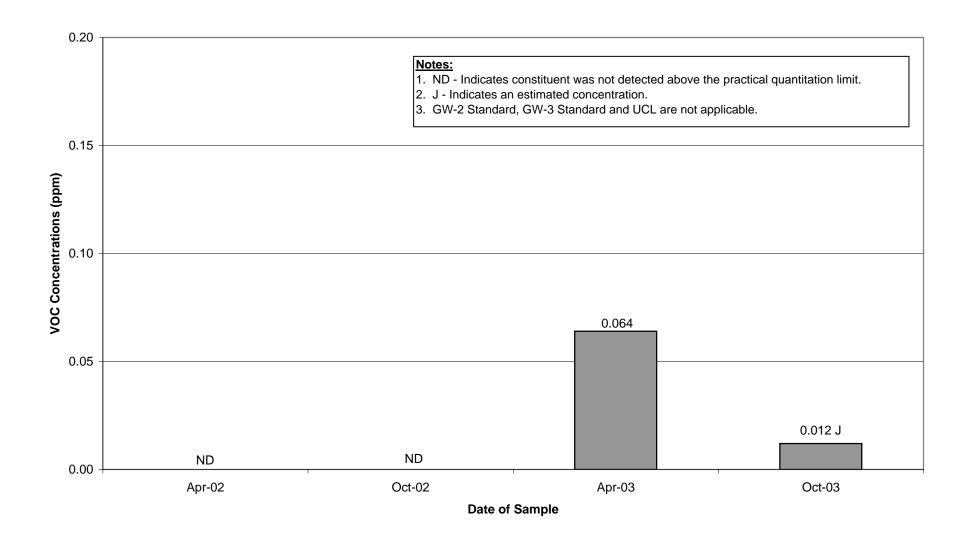
Sample ID Parameter Date Collected		MCP UCL for GroundWater	Detection Frequency	Minimum Detect	Maximum Detect	Median Value	Arithmetic Average	Geometric Mean	Standard Deviation			
Inorganics-Unfiltered												
Barium Not Applicable 100 3/4 0.023 0.03 0.0285 0.0450 0.0369 0.0368												
Chromium	Not Applicable	3	1/4	0.0011	0.0011	0.00500	0.00403	0.00342	0.00195			
Copper	Not Applicable	Not Listed	1/4	0.0014	0.0014	0.0130	0.0101	0.00745	0.00580			
Cyanide	Not Applicable	2	2/4	0.0027	0.0032	0.00410	0.00398	0.00383	0.00120			
Zinc	Not Applicable	50	2/4	0.011	0.015	0.0105	0.0115	0.0113	0.00238			
Inorganics-Filtered												
Barium	50	100	3/4	0.022	0.031	0.0300	0.0455	0.0375	0.0365			
Beryllium	0.05	0.5	1/4	0.00042	0.00042	0.000500	0.000480	0.000479	0.0000400			
Zinc	0.9	50	1/4	0.0068	0.0068	0.0100	0.00920	0.00908	0.00160			

Page 2 of 2

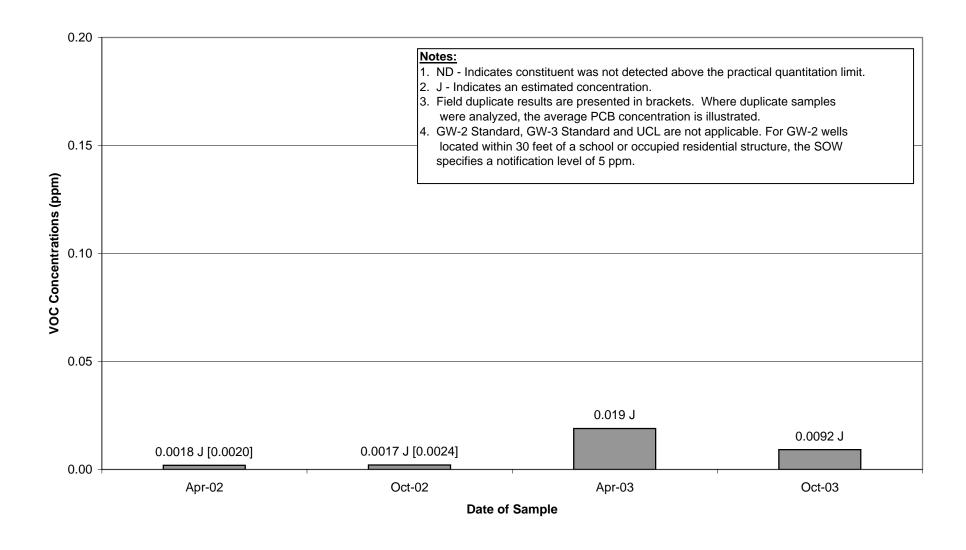
Table B-12 Summary Of Historical Groundwater Analytical Results - Well OJ-MW-2

Parameter	Sample ID: Date Collected:	Method 1 GW-2 Standards	Method 1 GW-3 Standards	MCP UCL for GroundWater	Detection Frequency	Minimum Detect	Maximum Detect	Median Value	Arithmetic Average	Geometric Mean	Standard Deviation
Volatile Orga											
Trichloroethe		0.03	5	50	4/4	0.0029	0.015	0.00840	0.00868	0.00708	0.00576
Total VOCs		5	Not Listed	Not Listed	4/4	0.0029	0.015	0.00840	0.00868	0.00708	0.00576
PCBs-Unfilte	ered		. 101 2.0100		., .	0.0020	0.0.0	0.000.0	0.0000	0.007.00	0.000.0
Aroclor-1260		Not Listed	Not Applicable	Not Listed	1/4	0.000031	0.000031	0.0000330	0.0000325	0.0000325	0.00000100
Total PCBs		Not Listed	Not Applicable	0.005	1/4	0.000031	0.000031	0.0000330	0.0000325	0.0000325	0.00000100
PCBs-Filtere	ed										
None Detecte	ed	Not Applicable	Not Applicable	Not Applicable	0/4	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Semivolatile	Organics				I.						
None Detecte		Not Applicable	Not Applicable	Not Applicable	0/4	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Organochlo	rine Pesticides				I						
None Detecte		Not Applicable	Not Applicable	Not Applicable	0/2	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Organophos	phate Pesticides				I						
None Detecte	ed	Not Applicable	Not Applicable	Not Applicable	0/2	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Herbicides	Į.	• •			I.				* *		
None Detecte	ed	Not Applicable	Not Applicable	Not Applicable	0/2	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Furans	l				I.						
2,3,7,8-TCDF	=	Not Listed	Not Listed	Not Listed	1/4	5.1E-09	5.1E-09	0.00000000535	0.0000000165	0.000000000894	0.00000000230
TCDFs (total)		Not Listed	Not Listed	Not Listed	1/4	5.1E-09	5.1E-09	0.00000000535	0.0000000165	0.000000000894	0.00000000230
1,2,3,7,8-PeC	DDF	Not Listed	Not Listed	Not Listed	2/4	0.000000001	0.000000014	0.0000000110	0.00000000423	0.0000000185	0.00000000652
PeCDFs (total	al)	Not Listed	Not Listed	Not Listed	3/4	2.6E-09	0.00000014	0.0000000645	0.00000000690	0.0000000378	0.00000000660
1,2,3,4,7,8-H	xCDF	Not Listed	Not Listed	Not Listed	2/4	1.3E-09	0.00000012	0.0000000125	0.00000000376	0.0000000179	0.0000000550
1,2,3,6,7,8-H		Not Listed	Not Listed	Not Listed	2/4	1.3E-09	9.8E-09	0.0000000125	0.00000000321	0.0000000170	0.00000000440
2,3,4,6,7,8-H		Not Listed	Not Listed	Not Listed	2/4	1.3E-09	7.7E-09	0.0000000125	0.00000000270	0.00000000164	0.0000000335
HxCDFs (total	,	Not Listed	Not Listed	Not Listed	3/4	9.6E-09	0.000000029	0.00000000970	0.0000000122	0.00000000589	0.0000000125
1,2,3,4,6,7,8-		Not Listed	Not Listed	Not Listed	3/4	2.6E-09	9.4E-09	0.00000000505	0.00000000515	0.00000000512	0.000000000624
1,2,3,4,7,8,9-		Not Listed	Not Listed	Not Listed	1/4	0.00000001	0.0000001	0.00000000120	0.00000000328	0.0000000178	0.00000000449
HpCDFs (total	al)	Not Listed	Not Listed	Not Listed	4/4	2.6E-09	0.00000032	0.0000000150	0.000000130	0.000000117	0.0000000548
OCDF		Not Listed	Not Listed	Not Listed	4/4	8.6E-09	0.000000047	0.0000000270	0.0000000263	0.0000000262	0.00000000222
Dioxins											
2,3,7,8-TCDI		Not Listed	Not Listed	Not Listed	1/4	0.000000004		0.000000000605	0.00000000141	0.000000000890	0.0000000173
TCDDs (total		Not Listed	Not Listed	Not Listed	1/4	0.000000004	0.000000004	0.0000000105	0.00000000164	0.0000000116	0.0000000162
1,2,3,7,8-PeC		Not Listed	Not Listed	Not Listed	1/4	0.00000001		0.000000000900	0.00000000310	0.0000000144	0.00000000461
PeCDDs (total	,	Not Listed	Not Listed	Not Listed	1/4	0.00000001	0.0000001	0.0000000155	0.0000000343	0.0000000194	0.00000000441
1,2,3,6,7,8-H		Not Listed	Not Listed	Not Listed	1/4	1.9E-09	1.9E-09	0.0000000160	0.00000000205	0.00000000154	0.00000000173
1,2,3,7,8,9-H		Not Listed	Not Listed	Not Listed	1/4	1.9E-09	1.9E-09	0.0000000160	0.00000000140	0.00000000124	0.000000000663
HxCDDs (tota		Not Listed	Not Listed	Not Listed	2/4	3.7E-09	0.000000005	0.00000000365	0.00000000433	0.00000000282	0.00000000376
1,2,3,4,6,7,8		Not Listed	Not Listed	Not Listed	3/4	9.1E-09	0.000000042	0.0000000180	0.0000000163	0.0000000123	0.0000000107
HpCDDs (total	aı)	Not Listed	Not Listed	Not Listed	3/4	0.000000012	0.00000022	0.0000000610	0.0000000631	0.000000164	0.0000000664
OCDD	WHO TEEs)	Not Listed	Not Listed	Not Listed	3/4 4/4	0.000000039	0.00000053	0.000000140	0.000000159	0.000000102	0.000000144
Total TEQs (	WHO IEFS)	Not Listed	0.0000001	0.000001	4/4	0.000000002	0.000000022	0.0000000345	0.00000000773	0.00000000478	0.00000000954

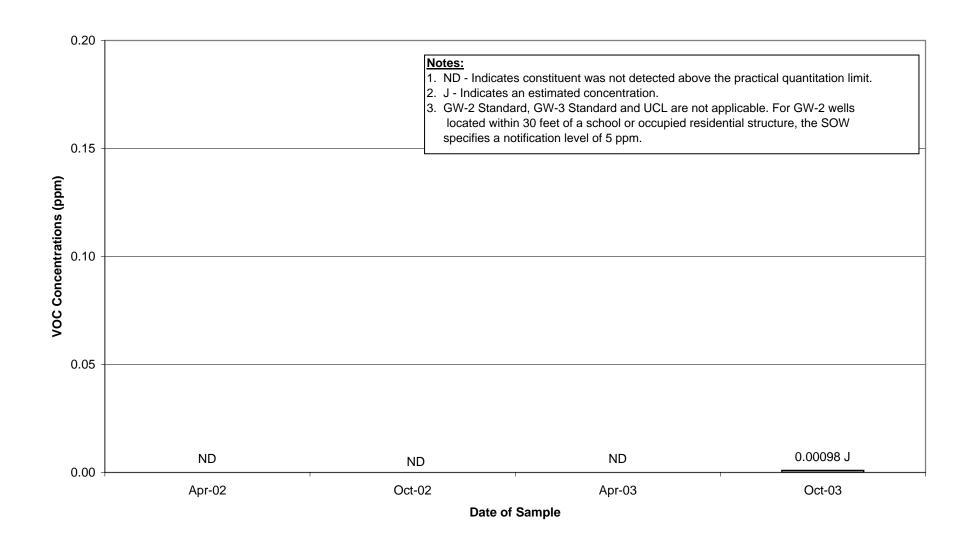
Table B-12 Summary Of Historical Groundwater Analytical Results - Well OJ-MW-2


	Sample ID:		Method 1 GW-3	MCP UCL	Detection	Minimum	Maximum	Median	Arithmetic	Geometric	Standard
Parameter	Date Collected:	Standards	Standards	for GroundWater	Frequency	Detect	Detect	Value	Average	Mean	Deviation
Inorganics-	Unfiltered										
Barium		Not Listed	Not Applicable	100	3/4	0.11	0.14	0.130	0.125	0.124	0.0191
Cadmium		Not Listed	Not Applicable	0.05	1/4	0.0018	0.0019	0.00250	0.00235	0.00233	0.000300
Chromium		Not Listed	Not Applicable	3	1/4	0	0.0015	0.00500	0.00458	0.00451	0.000850
Cobalt		Not Listed	Not Applicable	Not Listed	2/4	0.0018	0.0023	0.0190	0.0163	0.0117	0.0109
Copper		Not Listed	Not Applicable	Not Listed	2/4	0.0033	0.0091	0.0111	0.00960	0.00844	0.00458
Cyanide		Not Listed	Not Applicable	2	2/4	0.0032	0.004	0.00475	0.00443	0.00436	0.000850
Lead		Not Listed	Not Applicable	0.15	1/4	0.011	0.011	0.00150	0.00388	0.00247	0.00475
Nickel		Not Listed	Not Applicable	2	3/4	0.0025	0.0036	0.00345	0.00743	0.00508	0.00839
Silver		Not Listed	Not Applicable	1	1/4	0	0.0012	0.00250	0.00235	0.00233	0.000300
Vanadium		Not Listed	Not Applicable	40	1/4	0.003	0.003	0.0250	0.0195	0.0147	0.0110
Zinc		Not Listed	Not Applicable	50	4/4	0.036	0.13	0.0875	0.0853	0.0761	0.0426
Inorganics-	Filtered				•		•			•	•
Antimony		Not Listed	8	80	1/4	0.0051	0.0051	0.0300	0.0238	0.0193	0.0125
Barium		Not Listed	50	100	3/4	0.12	0.14	0.125	0.123	0.122	0.0171
Cadmium		Not Listed	0.004	0.05	1/4	0.0014	0.0019	0.00250	0.00293	0.00270	0.00143
Cobalt		Not Listed	Not Listed	Not Listed	1/4	0.0029	0.0029	0.0250	0.0195	0.0146	0.0111
Copper		Not Listed	Not Listed	Not Listed	2/4	0.0035	0.0057	0.00935	0.0182	0.0110	0.0216
Cyanide		Not Listed	0.03	2	1/3	0.0026	0.0026	0.00500	0.00420	0.00402	0.00139
Nickel		Not Listed	0.2	2	2/4	0.003	0.0037	0.0119	0.0117	0.00823	0.00959
Zinc		Not Listed	0.9	50	4/4	0.011	0.13	0.0615	0.0660	0.0479	0.0495

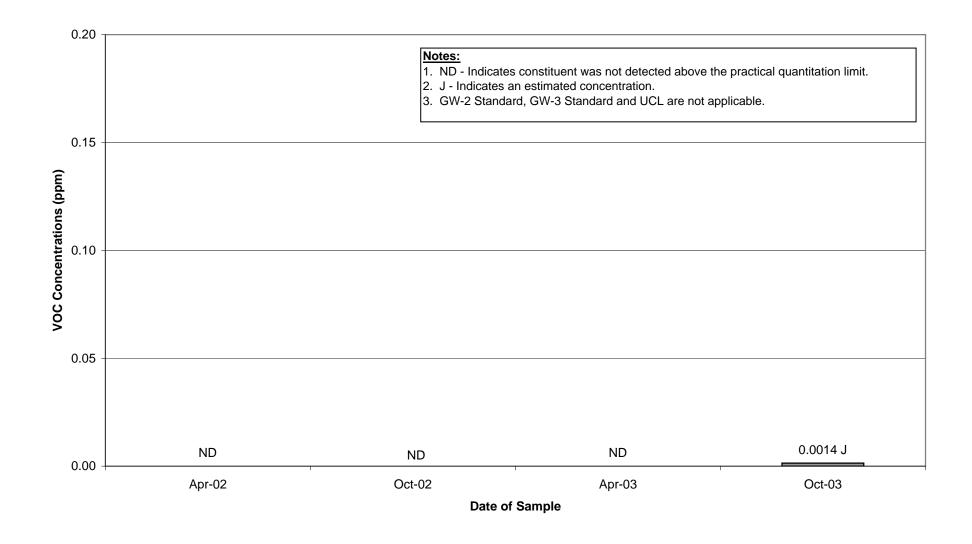



**Historical Groundwater Data** 

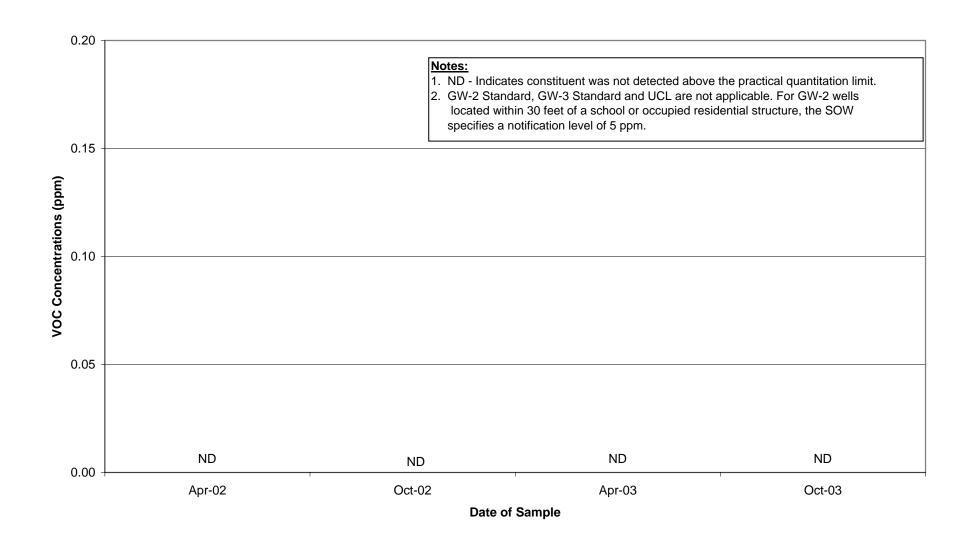
**Total VOC Concentrations** 


Appendix B
Well GMA2-1 Historical VOC Concentrations

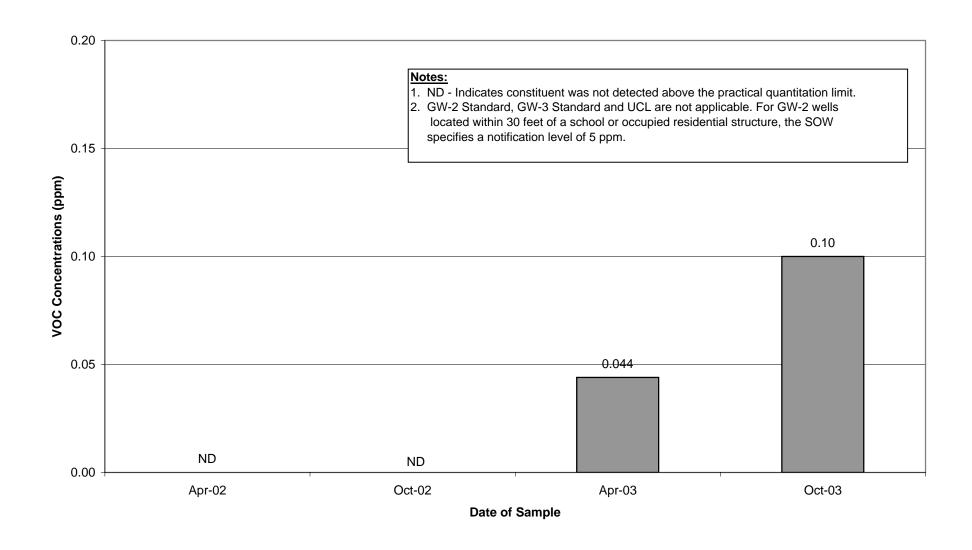



Appendix B
Well GMA2-2 Historical VOC Concentrations

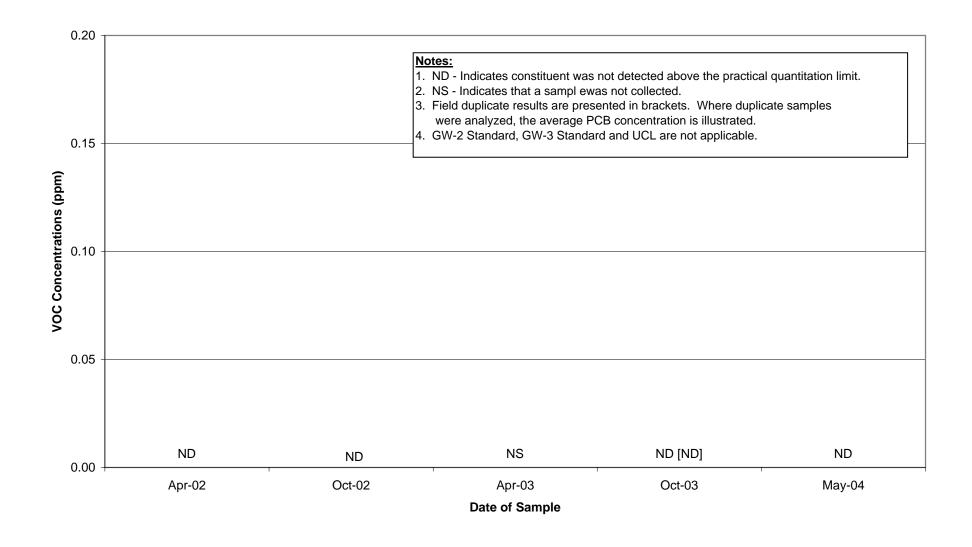



Appendix B
Well GMA2-3 Historical VOC Concentrations

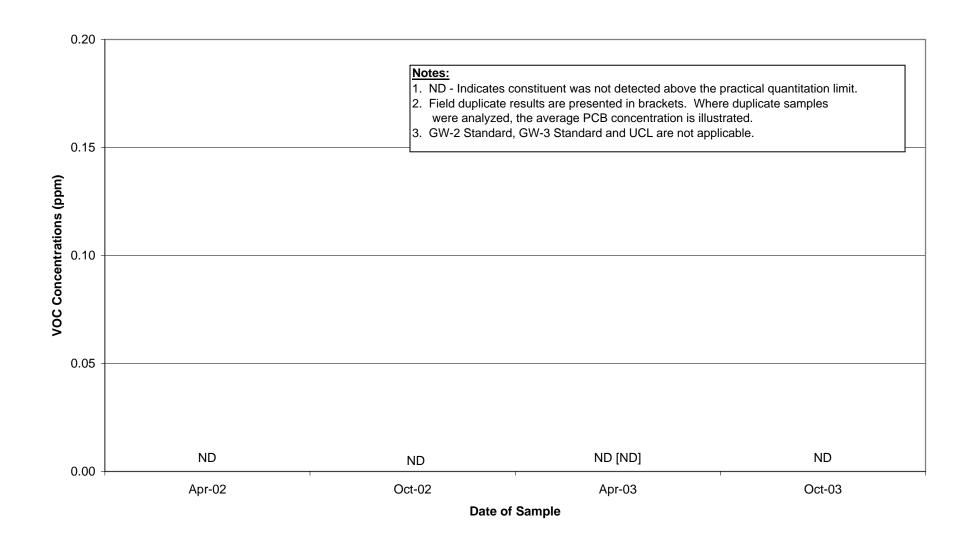



Appendix B Well GMA2-4 Historical VOC Concentrations

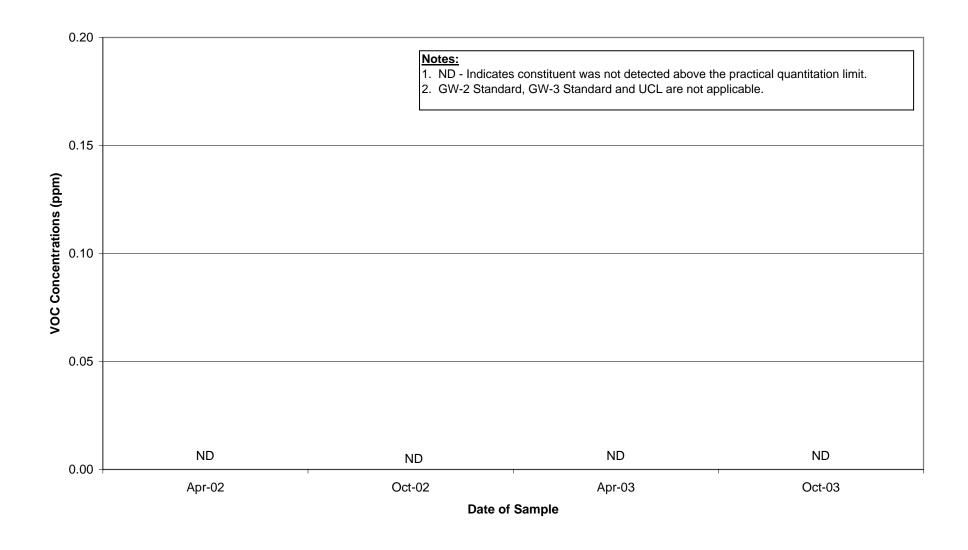



Appendix B
Well GMA2-5 Historical VOC Concentrations

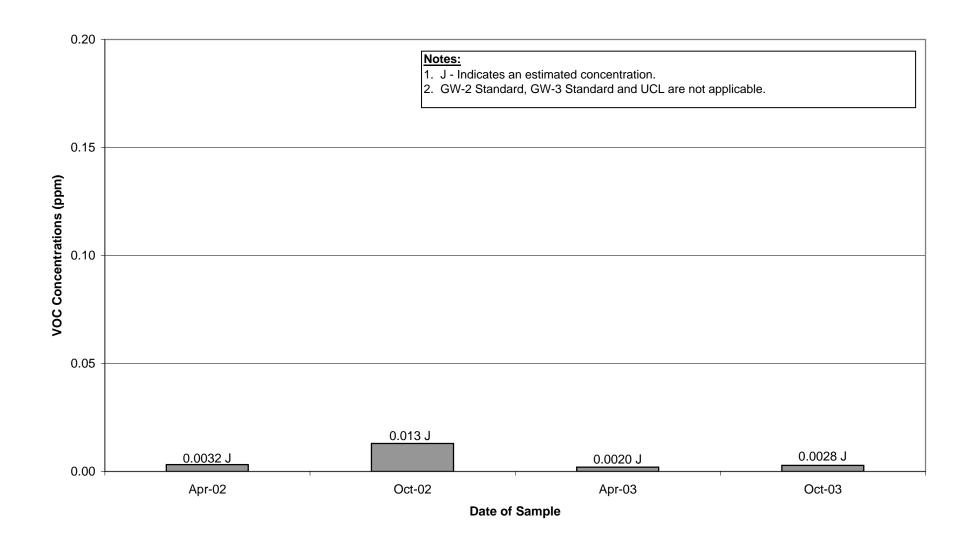



Appendix B
Well GMA2-6 Historical VOC Concentrations

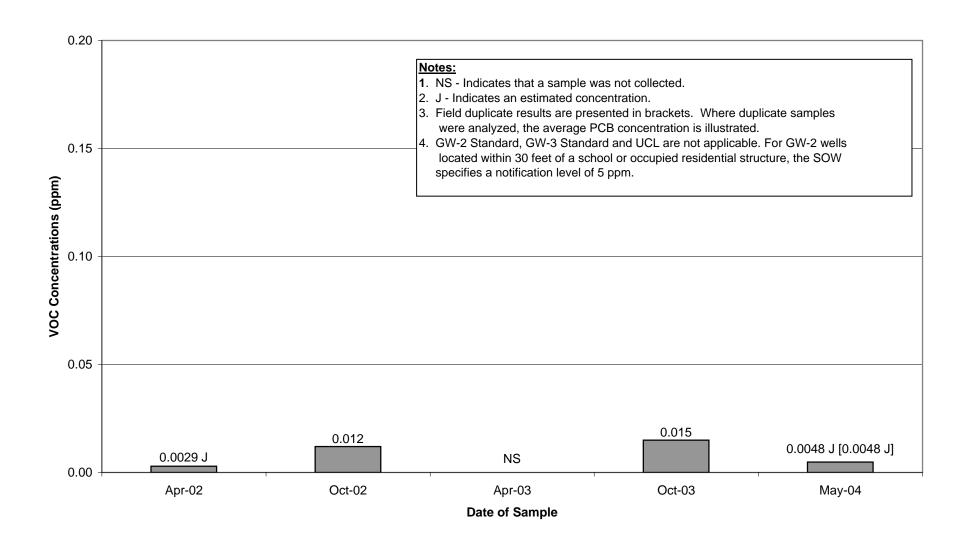



Appendix B
Well GMA2-7 Historical VOC Concentrations




Appendix B
Well GMA2-8 Historical VOC Concentrations



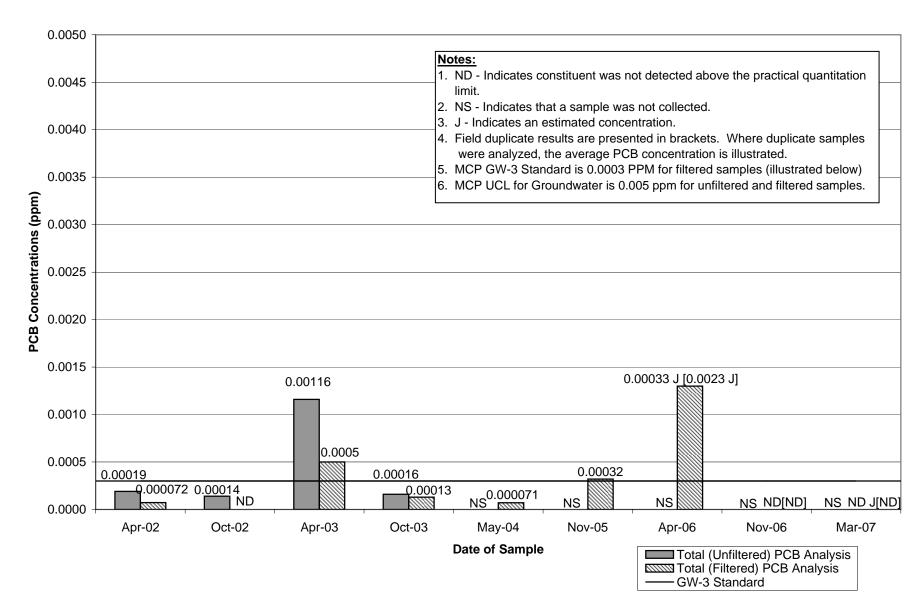

Appendix B
Well GMA2-9 Historical VOC Concentrations



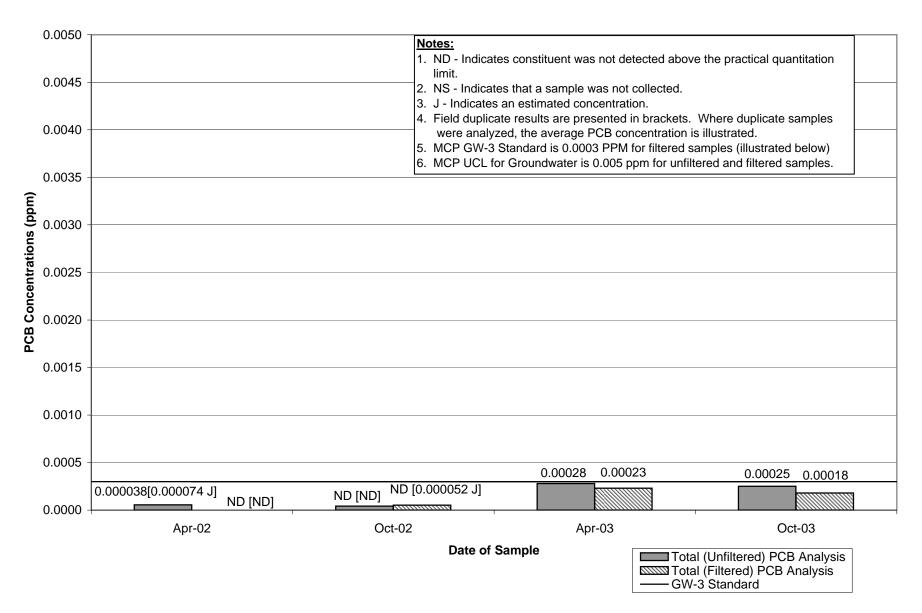
Appendix B
Well J-1R Historical VOC Concentrations



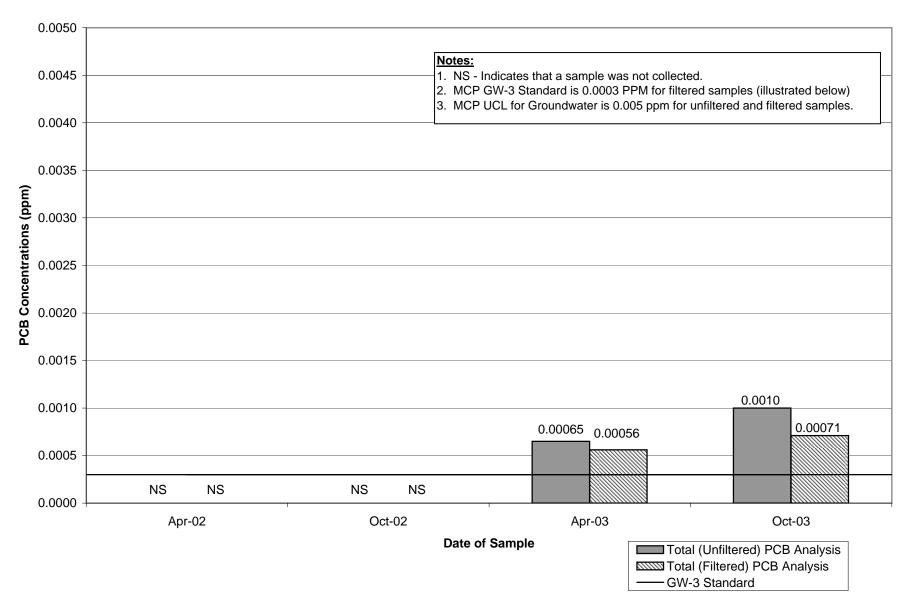
Appendix B
Well OJ-MW-2 Historical VOC Concentrations



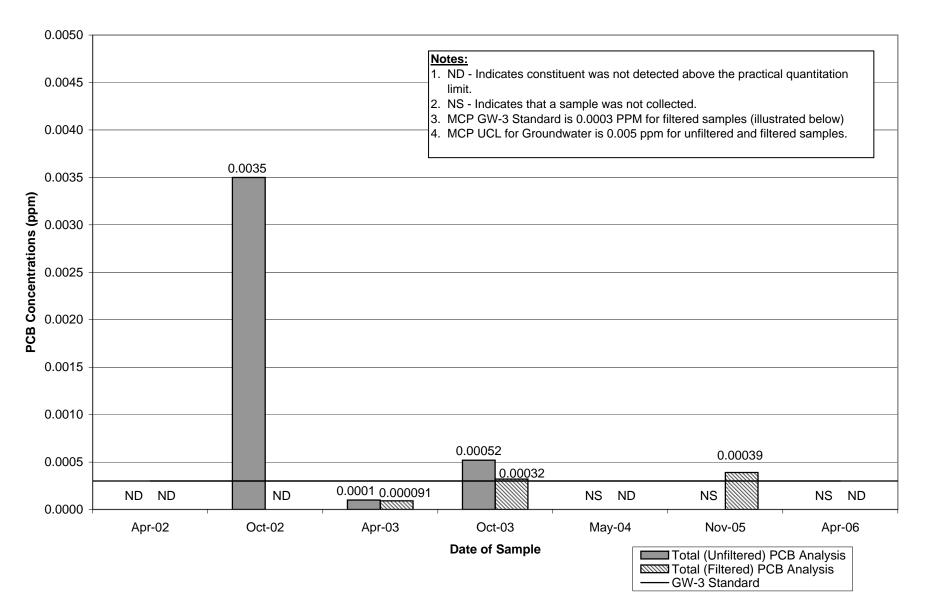




**Historical Groundwater Data** 

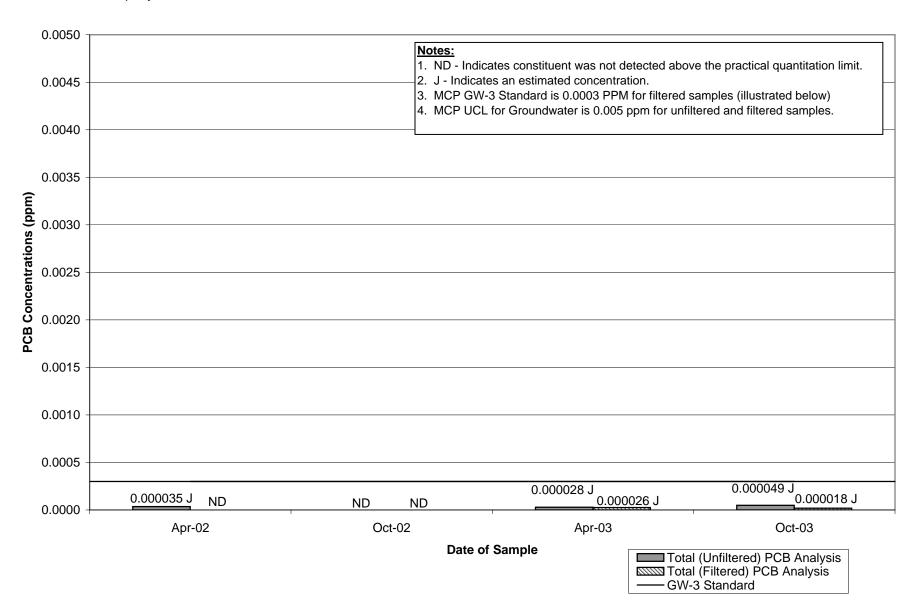
**Total PCB Concentrations** 


Appendix B
Well GMA2-1 Historical PCB Concentrations

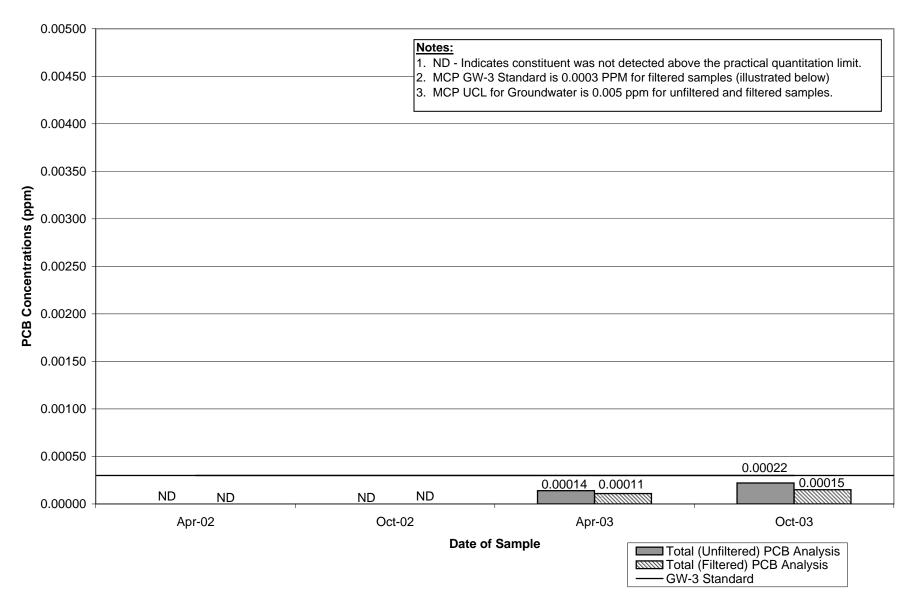



Appendix B
Well GMA2-2 Historical PCB Concentrations

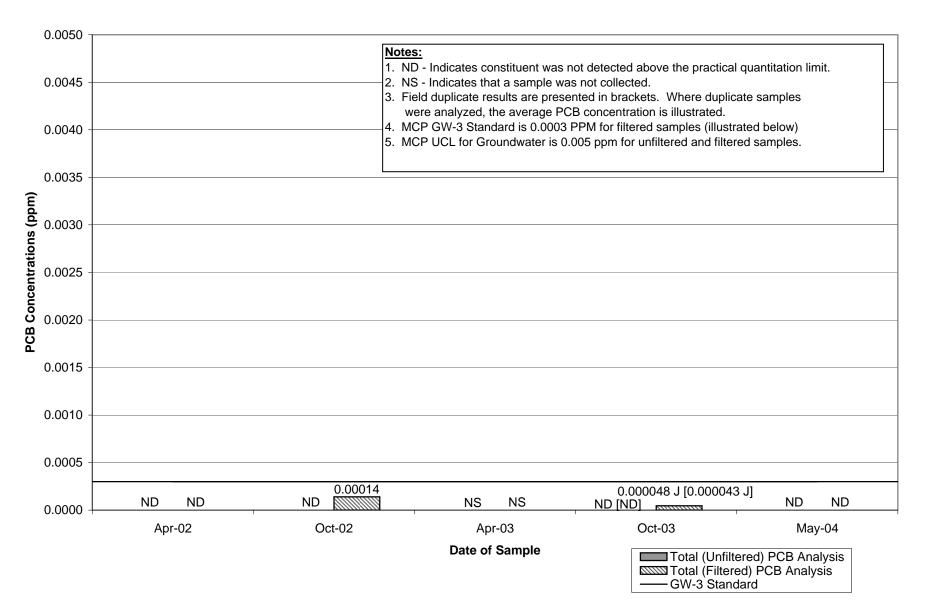



Appendix B
Well GMA2-3 Historical PCB Concentrations

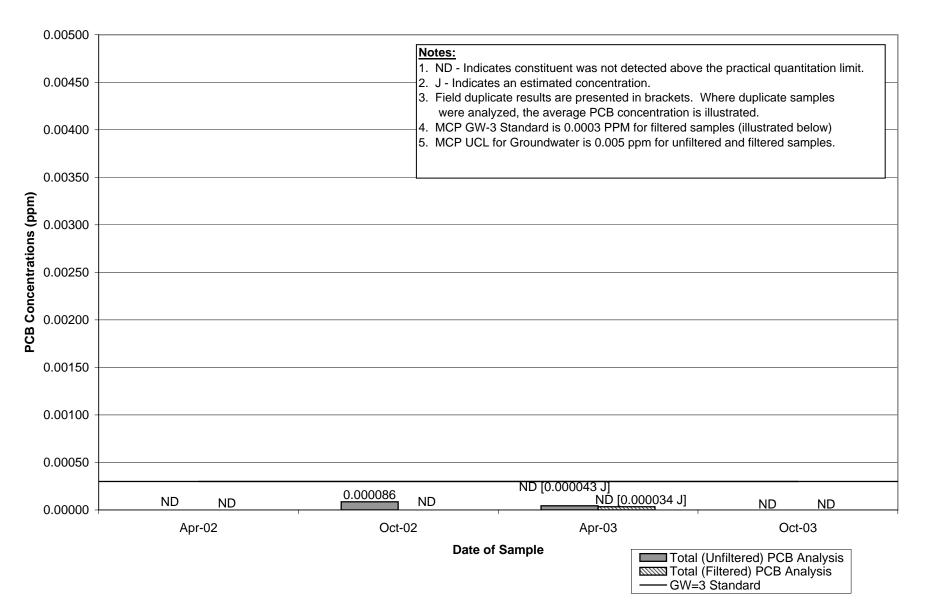



Appendix B
Well GMA2-4 Historical PCB Concentrations

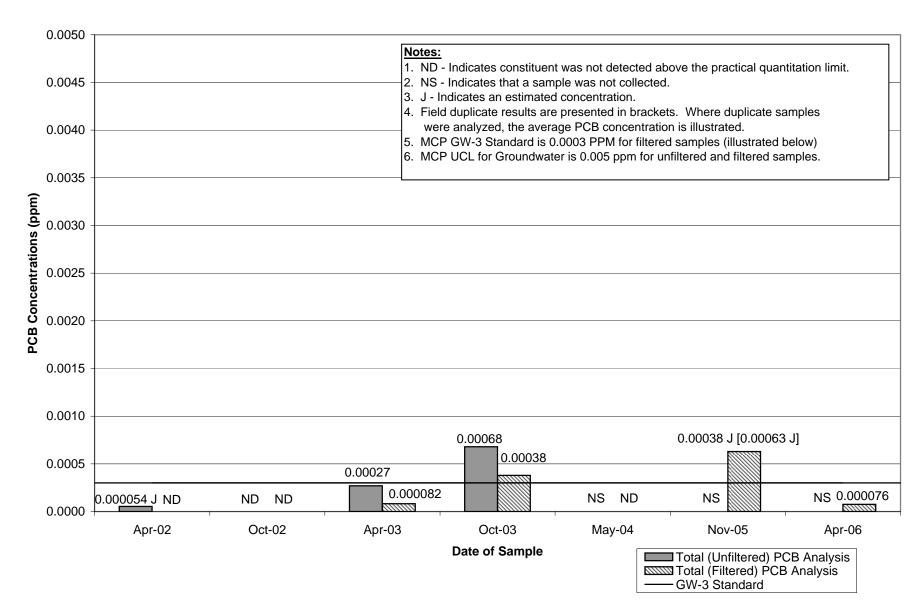



Appendix B
Well GMA2-5 Historical PCB Concentrations

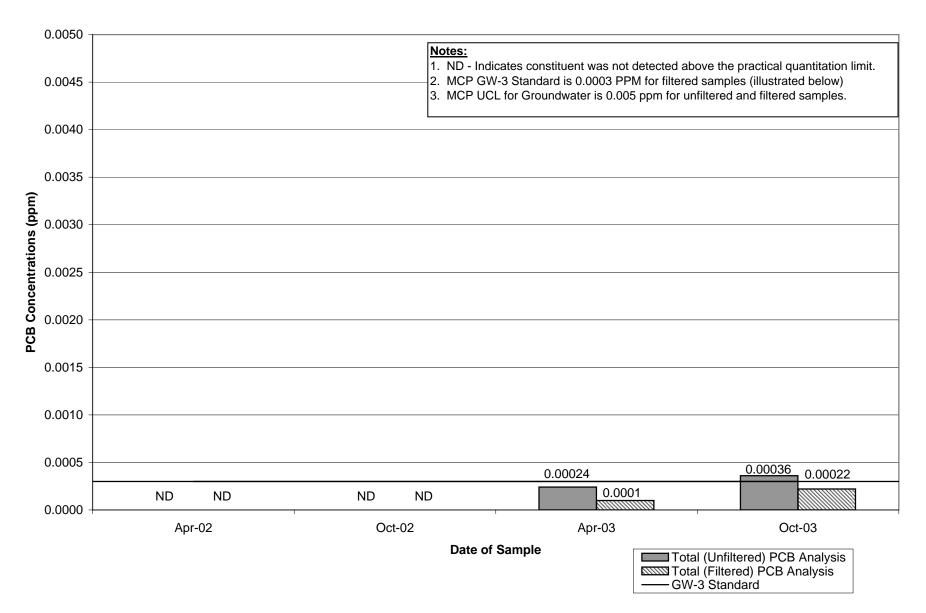



Appendix B
Well GMA2-6 Historical PCB Concentrations

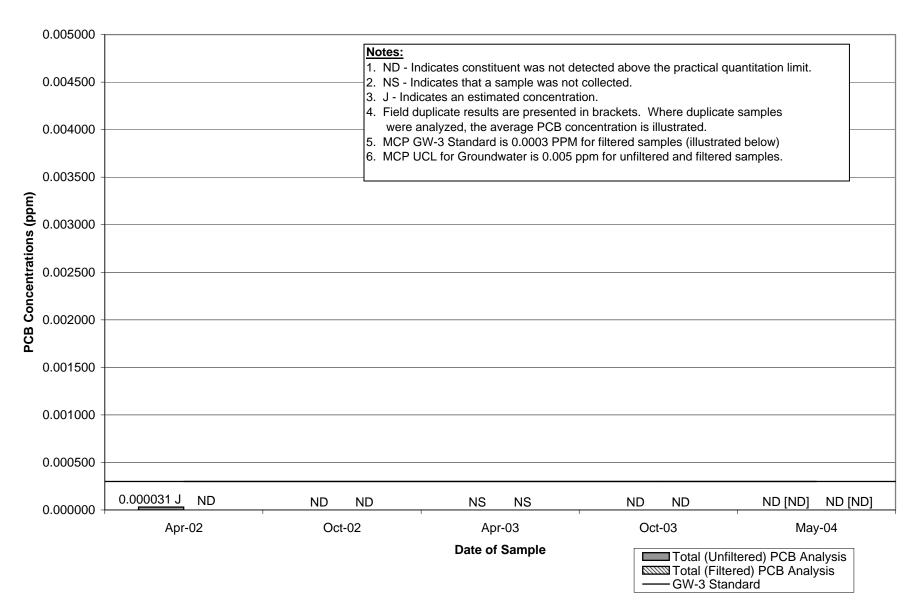



Appendix B
Well GMA2-7 Historical PCB Concentrations




Appendix B
Well GMA2-8 Historical PCB Concentrations




Appendix B
Well GMA2-9 Historical PCB Concentrations



Appendix B
Well J-1R Historical PCB Concentrations



Appendix B
Well OJ-MW-2 Historical PCB Concentrations



# **ARCADIS** BBL

# Appendix C

Data Validation Report – Spring 2007 Appendix C
Groundwater Sampling Data Validation Report
Groundwater Management Area 2 – Spring 2007

General Electric Company Pittsfield, Massachusetts

#### 1.0 General

This attachment summarizes the Tier I and Tier II data reviews performed for groundwater samples collected during Remedial Investigation activities conducted at Groundwater Management Area 2 (GMA 2), located at the General Electric Company/Housatonic River Site in Pittsfield, Massachusetts. The samples were analyzed for polychlorinated biphenyls (PCBs) by SGS Environmental Services, Inc. (formerly Paradigm Analytical Labs, Inc.) of Wilmington, North Carolina. Data validation was performed for three PCB samples.

#### 2.0 Data Evaluation Procedures

This attachment outlines the applicable quality control criteria utilized during the data review process and any deviations from those criteria. The data review was conducted in accordance with the following documents:

- Field Sampling Plan/Quality Assurance Project Plan, General Electric Company, Pittsfield, Massachusetts, Blasland, Bouck & Lee, Inc. (BBL; FSP/QAPP, approved May 25, 2004 and resubmitted June 15, 2004);
- Region I Tiered Organic and Inorganic Data Validation Guidelines, USEPA Region I (July 1, 1993);
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, USEPA Region I (February 1, 1988) (Modified November 1, 1988); and
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, USEPA Region I (Draft, December 1996).

A tabulated summary of the Tier I and Tier II data evaluations is presented in Table C-1. Each sample subjected to evaluation is listed in Table C-1 to document that data review was performed, as well as present the highest level of data validation (Tier I or Tier II) that was applied. Samples that required data qualification are listed separately for each parameter (compound or analyte) that required qualification.

The following data qualifiers were used in this data evaluation:

J The compound was positively identified, but the associated numerical value is an estimated concentration. This qualifier is used when the data evaluation procedure identifies a deficiency in the data generation process. This qualifier is also used when a compound is detected at an estimated concentration less than the corresponding practical quantitation limit (PQL).

- U The compound was analyzed for, but was not detected. The sample quantitation limit is presented and adjusted for dilution and (for solid samples only) percent moisture. Non-detect sample results are presented as ND(PQL) within this report and in Table C-1 for consistency with documents previously prepared for investigations conducted at this site.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is estimated and may or may not represent the actual level of quantitation. Non-detect sample results that required qualification are presented as ND(PQL) J within this report and in Table C-1 for consistency with documents previously prepared for this investigation.
- R Indicates that the previously reported detection limit or sample result has been rejected due to a major deficiency in the data generation procedure. The data should not be used for any qualitative or quantitative purpose.

#### 3.0 Data Validation Procedures

The FSP/QAPP provides (in Section 7.5) that all analytical data will be validated to a Tier I level following the procedures presented in the *Region I Tiered Organic and Inorganic Data Validation Guidelines* (USEPA guidelines). Accordingly, 100% of the analytical data for these investigations were subjected to Tier I review. The Tier I review consisted of a completeness evidence audit, as outlined in the *USEPA Region I CSF Completeness Evidence Audit Program* (USEPA Region I, 7/31/91), to ensure that all laboratory data and documentation were present. In the event data packages were determined to be incomplete, the missing information was requested from the laboratory. Upon completion of the Tier I review, the data packages complied with the USEPA Region I Tier I data completeness requirements. A tabulated summary of the samples subjected to Tier I and Tier II data evaluation is presented in the following table.

Summary of Samples Subjected to Tier I and Tier II Data Validation

_		Tier I Only					
Parameter	Samples	Duplicates	Blanks	Samples	Duplicates	Blanks	Total
PCBs	0	0	0	1	1	1	3
Total	0	0	0	1	1	1	3

As specified in the FSP/QAPP, all of the laboratory sample delivery group packages were randomly chosen to be subjected to Tier II review. A Tier II review was also performed to resolve data usability limitations identified from laboratory qualification of the data during the Tier I data review. The Tier II data review consisted of a review of all data package summary forms for identification of quality assurance/quality control (QA/QC) deviations and qualification of the data according to the Region I Data Validation Functional Guidelines. The Tier II review resulted in the qualification of data for several samples due to minor QA/QC deficiencies. Additionally, all field duplicates were examined for relative percent difference (RPD) compliance with the criteria specified in the FSP/QAPP. A tabulated summary of the samples subjected to Tier I and Tier II data evaluations is presented in the following table.

When qualification of the sample data was required, the sample results associated with a QA/QC parameter deviation were qualified in accordance with the procedures outlined in USEPA Region I data validation guidance documents. When the data validation process identified several quality control deficiencies, the cumulative effect of the various deficiencies was employed in assigning the final data qualifier. A summary of the QA/QC parameter deviations that resulted in data qualification is presented below for each analytical method.

#### 4.0 Data Review

MS/MSD sample analysis recovery criteria for organics require that the RPD between the MS and MSD recoveries be less than the laboratory-generated QC acceptance limits specified on the MS/MSD reporting form. The compounds that exceeded the RPD limit and the number of samples qualified due to deviations are presented in the following table.

Compounds Qualified Due to MS/MSD RPD Deviations

Analysis	Compound	Number of Affected Samples	Qualification
PCBs	Aroclor-1016	1	J
	Aroclor-1221	1	J
	Aroclor-1232	1	J
	Aroclor-1242	1	J
	Aroclor-1248	1	J
	Aroclor-1254	1	J
	Aroclor-1260	1	J
	Total PCBs	1	J

#### 5.0 Overall Data Usability

This section summarizes the analytical data in terms of its completeness and usability for site characterization purposes. Data completeness is defined as the percentage of sample results that have been determined to be usable during the data validation process. The percent usability calculation included analyses evaluated under both the Tier I and Tier II data validation reviews. Data completeness with respect to usability was calculated separately for inorganic and each of the organic analysis. The percent usability calculation also includes quality control samples collected to aid in the evaluation of data usability. Therefore, field/equipment blank, trip blank, and field duplicate data determined to be unusable as a result of the validation process are represented in the percent usability value tabulated in the following table.

**Data Usability** 

Parameter	Percent Usability	Rejected Data
PCBs	100	None

The data package completeness, as determined from the Tier I data review, was used in combination with the data quality deviations identified during the Tier II data review to determine overall data quality. As specified in the FSP/QAPP, the overall precision, accuracy, representativeness, comparability, and completeness (PARCC) parameters determined from the Tier I and Tier II data reviews were used as indicators of overall data quality. These parameters were assessed through an evaluation of the results of the field and laboratory QA/QC sample analyses to provide a measure of compliance of the analytical data with the Data Quality Objectives (DQOs) specified in the FSP/QAPP. Therefore, the following sections present summaries of the PARCC parameters assessment with regard to the DQOs specified in the FSP/QAPP.

#### 5.1 Precision

Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared to their average value. For this investigation, precision was defined as the RPD between duplicate sample results. The duplicate samples used to evaluate precision included field duplicates and MS/MSD samples. For this analytical program, 33.3% of the data required qualification due to MS/MSD RPD deviations. None of the data required qualification due to field duplicate RPD deviations.

#### 5.2 Accuracy

Accuracy measures the bias in an analytical system or the degree of agreement of a measurement with a known reference value. For this investigation, accuracy was defined as the percent recovery of QA/QC samples that were spiked with a known concentration of an analyte or compound of interest. The QA/QC samples used to evaluate analytical accuracy included instrument calibration, laboratory control standards (LCSs), MS/MSD samples, and surrogate compound recoveries. None of the data required qualification due to calibration, LCS recovery, MS/MSD recovery, or surrogate recovery deviations.

#### 5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is a qualitative parameter, which is most concerned with the proper design of the sampling program. The representativeness criterion is best satisfied by making certain that sampling locations are selected properly and a sufficient number of samples are collected. This parameter has been addressed by collecting samples at locations specified in MDEP-approved work plans, and by following the procedures for sample collection/analyses that were described in the FSP/QAPP. Additionally, the analytical program used procedures consistent with USEPA-approved analytical methodology. A QA/QC parameter that is an indicator of the representativeness of a sample is holding time. Holding time criteria are established to maintain the samples in a state that is representative of the in-situ field conditions before analysis. For this analytical program, none of the data required qualification due to holding time deviations.

#### 5.4 Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. This goal was achieved through the use of the standardized techniques for sample collection and analysis presented in the FSP/QAPP. The USEPA SW-846¹ analytical methods presented in the FSP/QAPP are updated on occasion by the USEPA to benefit from recent technological advancements in analytical chemistry and instrumentation. In most cases, the method upgrades include the incorporation of new technology that improves the sensitivity and stability of the instrumentation or allows the laboratory to increase throughput without hindering accuracy and precision. Overall, the analytical methods for this investigation have remained consistent in their general approach through continued use of the basic analytical techniques (e.g., sample extraction/preparation, instrument calibration, QA/QC procedures). Through this use of consistent base analytical procedures and by requiring that updated procedures meet the QA/QC criteria specified in the FSP/QAPP, the analytical data from past, present, and future sampling events will be comparable to allow for qualitative and quantitative assessment of site conditions.

#### 5.5 Completeness

Completeness is defined as the percentage of measurements that are judged to be valid or usable to meet the prescribed DQOs. The completeness criterion is essentially the same for all data uses -- the generation of a sufficient amount of valid data. This analytical data set had an overall usability of 100%.

¹ Test Methods for evaluating Solid Waste, SW-846, USEPA, Final Update III, December 1996.

Table C-1
Analytical Data Validation Summary

Sample Delivery Group No. PCBs	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
G135-341	GMA2-1 (Filtered)	3/8/2007	Water	Tier II	Yes	Aroclor-1016	MS/MSD RPD	12.5%	<12%	ND(0.00010) J	
						Aroclor-1221	MS/MSD RPD	12.5%	<12%	ND(0.00010) J	
						Aroclor-1232	MS/MSD RPD	12.5%	<12%	ND(0.00010) J	
						Aroclor-1242	MS/MSD RPD	12.5%	<12%	ND(0.00010) J	
						Aroclor-1248	MS/MSD RPD	12.5%	<12%	ND(0.00010) J	
						Aroclor-1254	MS/MSD RPD	12.5%	<12%	ND(0.00010) J	
						Aroclor-1260	MS/MSD RPD	12.5%	<12%	ND(0.00010) J	
						Total PCBs	MS/MSD RPD	12.5%	<12%	ND(0.00010) J	
G135-341	GMA2-DUP-1 (Filtered)	3/8/2007	Water	Tier II	No						GMA2-1 (Filtered)
G135-341	GMA2-RB-1 (Filtered)	3/8/2007	Water	Tier II	No						

# **ARCADIS** BBL

# Appendix D

Outline of Monitoring Event Evaluation Report

# GMA 2 Long-Term Monitoring Proposal

# **ARCADIS** BBI

General Electric Company Pittsfield, Massachusetts

#### Appendix D – Outline of Monitoring Event Evaluation Report

#### 1. Introduction

- 1.1 General
- 1.2 Background Information
- 1.3 Format of Document

# 2. Field and Analytical Procedures

- 2.1 General
- 2.2 Groundwater Elevation Monitoring
- 2.3 Groundwater Sampling and Analysis

## 3. Groundwater Analytical Results

- 3.1 General
- 3.2 Groundwater Quality Performance Standards
- 3.3 Groundwater Quality Results
- 3.4 Groundwater Quality
  - 3.4.1 Groundwater Results Relative to GW-3 Performance Standards
  - 3.4.2 Comparison of Groundwater Results to Upper Concentration Limits

# 4. Assessment of Groundwater Quality

- 4.1 General
  - 4.1.1 Evaluation of Variations in Groundwater Quality
    - 4.1.1.1 Comparison to Baseline Data
    - 4.1.1.2 Comparison to Previous Round
    - 4.1.1.3 Evaluation of Variability in Data
  - 4.1.2 Statistical Assessment of Data
  - 4.1.3 Comparison to Baseline Data
- 4.2 Overall Assessment of Groundwater Quality Data

# GMA 2 Long-Term Monitoring Proposal

# **ARCADIS** BBL

General Electric Company Pittsfield, Massachusetts

4.3 Evaluation of the Need for Follow-up Investigations or Assessments or Interim Response Actions

## 5. Proposed Modifications to Long-Term Monitoring Program

- 5.1 General
- 5.2 Proposed Groundwater Monitoring Program Modifications
  - 5.2.2 Groundwater Quality Monitoring
  - 5.2.3 Groundwater Elevation and NAPL Monitoring
- 5.3 Proposed Interim Response Action

#### 6. Schedule of Future Activities

- 6.1 Field Activities Schedule
- 6.2 Reporting Schedule